

Gesture and Sign Language Recognition with Deep Learning

Herkenning van gebaren en gebarentaal met ‘Deep Learning’

Lionel Pigou

Promotor: prof. dr. ir. Joni Dambre
Copromotor: prof. dr. Mieke Van Herreweghe
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. Koen De Bosschere
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017-2018

Department of Electronics and Information Systems
Faculty of Engineering and Architecture
Ghent University

Internet Technology and Data Science Lab
iGent, Technologiepark-Zwijnaarde 15
B-9052 Ghent
Belgium

Promotors:
Prof. dr. ir. Joni Dambre
Prof. dr. Mieke Van Herreweghe

Examination board:
Prof. dr. ir. Filip De Turck, Ghent University, chairman
Prof. dr. Steven Verstockt, Ghent University, secretary
Prof. dr. ir. Tinne Tuytelaars, KU Leuven
Prof. dr. Véronique Hoste, Ghent University
Dr. ir. Michiel Stock, Ghent University
Dr. Myriam Vermeerbergen,KU Leuven

This work was funded by the agency Flanders Innovation &
Entrepreneurship (VLAIO).

Summary

This dissertation investigates the use of deep neural networks in
gesture recognition and sign language recognition in videos.

Gesture recognition is becoming increasingly important and
is one of the core components in the thriving research fields of
human-computer interaction, robotics, video surveillance, user
interface design and multimedia video retrieval. Also, gestures
are used at aircraft decks, in busy restaurants, during deep sea
diving or to support spoken language. Furthermore, gesture
identification in video can be seen as a first step towards sign
language recognition.

Research to automate sign language recognition is not only
important for people with a hearing impairment, but also for their
colleagues, friends and family who want to learn the language
with a learning software platform or a digital dictionary for sign
language. Furthermore, large sign language video corpora (i.e.
large collections of recorded and annotated sign language) are
assembled and take huge effort, time and funding to get anno-
tated. Gesture and sign language recognition research would help
alleviate these costs and speed up the annotation.

We start with classifying gestures that are few in numbers and
are relatively easy to distinguish from each other. The promising
results lead us to study the use of these methods in sign lan-
guage recognition in video corpora and TV news broadcasts. The
increase in difficulty from gesture recognition to sign language
recognition is significant. Therefore, we first experiment with the

ii

classification of isolated signs (the beginning and the ending of
each sign is given) before tackling continuous recognition.

Gesture recognition with HMMs and 3D CNNs

The ChaLearn Montalbano gesture recognition dataset is a large
collection of videos consisting of twenty different classes of Italian
gestures recorded with a Microsoft Kinect depth-sensing camera.
The challenge is to classify every gesture and to locate the gestures
in time (temporal segmentation). The multimodal nature of the
problem and the fact that gesture sequences have a variable length
are the two aspects that we focus on.

Inspired by successful approaches in the speech recognition
research field, we propose a data-driven model for this gesture
recognition problem. Different users perform gestures with differ-
ent speeds resulting in gesture sequences with a variable length.
To tackle this, we employ hidden Markov models (HMMs). In
our case, the HMMs model the different temporal states of each
gesture.

The depth-sensing camera records images, depth maps and
allows the positional tracking of skeletal joints. Therefore, our
approach is split into two different modules: (i) a RGB-D module
using a 3D convolutional neural network (3D CNN) on the images
and the depth maps, and (ii) a skeleton module using a deep
belief network (DBN) on the skeleton joint positions. Finally,
we investigate a fusion strategy to incorporate both the skeletal
features and the video features into the HMMs.

Gesture recognition with temporal convolutions
and recurrence

A drawback to the previous method is that the different modules
(HMM, 3D CNN and DBN) act independently from each other
and need to be trained and evaluated in multiple stages. We

iii

unify the modules and stages with an end-to-end deep neural
network, backed by the many recent successes in the deep learning
field. A significant increase in accuracy is observed with the
ChaLearn Montalbano gesture recognition dataset. Furthermore,
the training and the evaluation of the models are made easier and
faster.

Previous research suggests using a simple temporal feature
pooling strategy to take into account the temporal aspect of video.
We demonstrate that this method is not sufficient for gesture
recognition, where temporal information is more discriminative
compared to general video classification tasks. We explore different
deep architectures and propose a new end-to-end trainable neural
network architecture incorporating temporal convolutions and
bidirectional recurrence. Our main contributions are twofold;
first, we show that recurrence is crucial for this task; second,
we show that adding temporal convolutions leads to significant
improvements.

Sign language recognition in video corpora

The first half of this thesis shows that deep neural networks has
great potential for gesture recognition. This gives us an indication
that deep networks could be useful for more complex tasks in the
field. That is why we take it a step further by investigating sign
language recognition. The problem is approached by classifying
gestures and signs from sign language corpora: large collections of
sign language video material. The corpora we evaluate our models
on are the Flemish Sign Language Corpus (Corpus VGT), the
Dutch Sign Language Corpus (Corpus NGT) and the ChaLearn
LAP RGB-D Continuous Gesture Dataset (ConGD).

Two different setups are analyzed. The first setup considers the
classification of isolated signs. Each annotated sign in the corpora
is cut into a video fragment on which we build a classification
model: a convolutional neural network. Furthermore, we show

iv

a method to cope with the fewer Corpus VGT annotations by
transferring the learned features of the larger Corpus NGT. In the
second setup, we research continuous sign language recognition
using 3D residual networks and other recent breakthroughs in
deep learning. We approach the problem as a frame by frame
classification task, in which the temporal locations of the gestures
and the signs are not given during evaluation.

Sign language recognition in TV news broadcasts

Many TV broadcasting organizations like the BBC (British Broad-
casting Corporation) or the VRT (Flemish Radio and Television
Broadcasting Organization) are making their news broadcasts
accessible to deaf people by overlaying an interpreter to the screen.
This means that there is a huge amount of data available where
spoken language is translated to sign language. This vast amount
of data presents itself as a challenging and unique machine trans-
lation or video captioning problem where the video stream is the
source and the subtitles are the targets.

Up until now we approached sign language recognition as a se-
quence of individual gestures/signs that are transcribed separately.
Yet, sign language and written language have no one-to-one map-
ping on word level. There is, however, a mapping of meaning.
The meaning of a short sign language sequence can be mapped
to the meaning of a word, a group of words or a sentence. We
use this view of the problem to create our models. We build a
model that tries to embed small fragments of Flemish TV news
sign language video into an established vector representation of
words: Word2Vec trained on the Dutch Wikipedia.

Samenvatting

In dit proefschrift onderzoeken we het gebruik van diepe neu-
rale netwerken voor het herkennen van gebaren en gebarentaal
in video’s. Het herkennen van gebaren wordt steeds belangrijker
en is een kerncomponent in onderzoeksgebieden en toepassingen
zoals mens-computer-interactie, robotica, videobewaking en het
ontwerp van gebruikersinterfaces. Gebaren worden ook gebruikt
op vliegtuigdekken, in drukke restaurants, tijdens het diepzeedui-
ken of ter ondersteuning van gesproken taal. Bovendien kan het
identificeren van gebaren in video’s worden gezien als een eerste
stap naar de herkenning van gebarentaal.

Onderzoek om de herkenning van gebarentaal te automatiseren
is niet alleen belangrijk voor mensen met een gehoorbeperking,
maar ook voor hun collega’s, vrienden en familie die de taal willen
leren met een leersoftwareplatform of een digitale woordenboek
voor gebarentaal. Verder kost het annoteren van een gebarentaal-
corpus (een grote verzameling van video’s met gebarentaal) veel
inspanning, tijd en financiering. Onderzoek naar het herkennen
van gebaren en gebarentaal zou deze kosten helpen te verlichten
door de annotatie te versnellen.

We beginnen met het classificeren van een twintig-tal geba-
ren die relatief eenvoudig van elkaar te onderscheiden zijn. De
veelbelovende resultaten leiden ons tot het bestuderen van deze
methodes voor het herkennen van gebarentaal in videocorpora en
nieuwsuitzendingen van de VRT. We experimenteren eerst met
de classificatie van geïsoleerde gebaren (het begin en het einde
van elke gebaar is gegeven) voordat de continue herkenning van

vi

gebarentaal wordt aangepakt.

Gebarenherkenning met HMM’s en 3D CNN’s

De ChaLearn Montalbano gebarenherkenning dataset is een grote
verzameling video’s bestaande uit twintig verschillende klassen
van Italiaanse gebaren opgenomen met een Microsoft Kinect 3D
camera. De uitdaging is om elk gebaar te classificeren en de
gebaren op de tijdsas te lokaliseren (temporele segmentatie). De
multimodale aard van het probleem en het feit dat gebaren een
variabele lengte hebben, zijn de twee aspecten waarop we ons
richten.

Geïnspireerd door succesvolle benaderingen in het onderzoeks-
veld van spraakherkenning, stellen we een datagestuurd model
voor. Verschillende gebruikers voeren gebaren uit met verschil-
lende snelheden, wat resulteert in fragmenten met een variabele
lengte. Om dit aan te pakken, gebruiken we hidden Markov model-
len (HMM’s). In ons geval modelleren de HMM’s de verschillende
temporele toestanden van elk gebaar.

De 3D camera neemt beelden op met dieptezicht en maakt
het mogelijk om skeletale gewrichten te tracken. Daarom is onze
aanpak opgesplitst in twee verschillende modules: (i) een RGB-D-
module met behulp van een 3D convolutioneel neuraal netwerk (3D
CNN) voor de beelden met dieptezicht, en (ii) een skeletmodule
met behulp van een deep belief netwerk (DBN) voor de skeletale
gewrichtsposities. Ten slotte wordt een manier gevonden om
zowel de skeletkenmerken als de videokenmerken te fuseren en te
integreren met de HMM’s.

Gebaarherkenning met temporele convoluties
en recurrentie

Een nadeel van de vorige methode is dat de verschillende modules
(HMM, 3D CNN en DBN) onafhankelijk van elkaar werken en in

vii

meerdere fasen moeten worden getraind en geëvalueerd. In dit
hoofdstuk verenigen we de modules en fasen met een end-to-end
diep neuraal netwerk, ondersteund door de vele recente successen
in het gebied van deep learning. Een significante toename in
nauwkeurigheid wordt waargenomen bij de ChaLearn Montalbano
gebarenherkenning dataset. Bovendien wordt de training en de
evaluatie van de modellen eenvoudiger en sneller gemaakt.

Eerder onderzoek suggereert het gebruik van een eenvoudige
temporele poolingstrategie om rekening te houden met het tijds-
aspect van video. We tonen dat deze methode niet voldoende is
voor gebarenherkenning, waarbij de temporele informatie discri-
minerend is in vergelijking met algemene videoklassificatietaken.
We vergelijken verschillende diepe architecturen en stellen een
nieuwe end-to-end trainbare neurale netwerkarchitectuur voor
met temporele convoluties en bidirectionele recurrentie. Onze
belangrijkste bijdragen zijn tweeledig; ten eerste laten we zien
dat recurrentie cruciaal is voor deze taak; ten tweede laten we
zien dat het toevoegen van temporele convoluties tot aanzienlijke
verbeteringen leidt.

Herkennen van gebarentaal in videocorpora

De eerste helft van dit proefschrift toont dat diepe neurale net-
werken veel potentieel hebben voor gebarenherkenning. Dit geeft
ons een indicatie dat diepe netwerken nuttig kunnen zijn voor
meer complexe taken in het veld. Daarom gaan we een stap
verder door de herkenning van gebarentaal te onderzoeken. Het
probleem wordt benaderd door gebaren te classificeren uit geba-
rentaalcorpora: grote verzamelingen van videomateriaal in een
gebarentaal. De corpora waarmee we onze modellen evalueren,
zijn het Corpus Vlaamse Gebarentaal (Corpus VGT), het Corpus
Nederlandse Gebarentaal (Corpus NGT) en de ChaLearn LAP
RGB-D Continuous Gesture Dataset (ConGD).

Twee verschillende opstellingen worden geanalyseerd. De eer-

viii

ste opstelling houdt rekening met de classificatie van geïsoleerde
gebaren. Elk geannoteerd gebaar in de corpora wordt als een vi-
deofragment bijgesneden waarop we een classificatiemodel bouwen:
een convolutioneel neuraal netwerk. Ook tonen we een methode
die omgaat met het feit dat de Corpus VGT minder annotaties
bevat: de modelkenmerken, geleerd met het grotere Corpus NGT,
worden overgedragen. In de tweede opstelling onderzoeken we de
continue herkenning van gebarentaal met behulp van 3D residuele
netwerken en andere recente doorbraken in deep learning. We
benaderen het probleem als een beeldgewijze classificatietaak,
waarbij de temporele locaties van de gebaren niet gekend zijn.

Herkennen van gebarentaal in TV-nieuwsuitzendingen

Veel TV-omroeporganisaties zoals de BBC (British Broadcasting
Corporation) of de VRT (Vlaamse Radio- en Televisieomroepor-
ganisatie) maken hun nieuwsuitzendingen toegankelijk voor dove
mensen door de integratie van een tolk op het scherm. Dit be-
tekent dat er een enorme hoeveelheid data beschikbaar is waar
gesproken taal is vertaald naar gebarentaal. Deze data presenteert
zichzelf als een uitdagend en uniek video-ondertitelingsprobleem.

Tot nu toe hebben we het herkennen van gebarentaal bena-
derd als een reeks van individuele gebaren die afzonderlijk worden
geclassificeerd. Toch hebben gebarentaal en geschreven taal geen
één-op-één-toewijzing op woordniveau. Er is echter wel een toe-
wijzing op vlak van betekenis. De betekenis van een fragment
in gebarentaal kan worden toegewezen aan de betekenis van een
woord, een groep woorden of een zin. We gebruiken deze kijk op
het probleem om onze modellen te ontwerpen. We bouwen een
model dat kleine videofragmenten van “Het Journaal” (VRT; met
gebarentaal) probeert in te bedden in een vectorrepresentatie van
woorden: Word2Vec getraind op de Nederlandse Wikipedia.

List of Acronyms

ANN Artificial Neural Network
CNN Convolutional Neural Network
ConGD ChaLearn LAP RGB-D Continuous Gesture Dataset
DBN Deep Belief Network
ELU Exponential Linear Unit
ES Ergodic State
GMM Gaussian Mixture Model
HMM Hidden Markov Model
LCN Local Contrast Normalization
LReLU Leaky Rectified Linear Unit
LSTM Long Short-Term Memory
MFCC Mel-Frequency Cepstral Coefficient
NAG Nesterov’s Accelerated Gradient
NGT Nederlandse Gebarentaal
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
RGB-D Red Green Blue and Depth
RNN Recurrent Neural Network
SLR Sign Language Recognition
SVM Support Vector Machine
VGT Vlaamse Gebarentaal
VRT Vlaamse Radio- en Televisieomroeporganisatie
ZMUV Zero Mean Unit Variance

Contents

1 Introduction 1

1.1 Gesture recognition 2
1.2 Sign language recognition 5
1.3 Research contributions 6
1.4 List of publications 9

2 Deep learning 11

2.1 Machine learning 11
2.1.1 Introduction 11
2.1.2 Overfitting and generalization 13

2.2 Neural networks 14
2.2.1 Gradient descent 18
2.2.2 Deep learning 21

2.3 Convolutional neural networks 22
2.3.1 Filter bank 24
2.3.2 Max pooling 26
2.3.3 Complete network 26

2.4 Recurrent neural networks 28
2.4.1 Standard cell 29
2.4.2 Long short-term memory cell 30

xii Contents

2.5 Optimization and regularization techniques 31
2.5.1 Normalization 31
2.5.2 Improved gradient descent update rules . . 34
2.5.3 Dropout 36
2.5.4 Data augmentation 37

3 Gesture recognition using HMMs and 3D CNNs 39

3.1 Introduction . 40
3.1.1 Modeling variable length sequences with

HMMs . 41
3.1.2 Learning emission probabilities with two

modalities 42
3.2 Related work . 43
3.3 ChaLearn LAP Montalbano gesture recognition

dataset . 47
3.4 Model formulation & overall approach 49

3.4.1 Bayesian networks 49
3.4.2 Hidden Markov models 51
3.4.3 Deep dynamic neural networks 53
3.4.4 State-transition model and inference . . . 54
3.4.5 Learning the emission probability 55

3.5 Model implementation 58
3.5.1 Ergodic states HMM 59
3.5.2 Skeleton module 60
3.5.3 RGB & depth 3D module 62
3.5.4 Multimodal fusion 66

3.6 Experiments and analysis 69
3.6.1 Experimental protocol 70
3.6.2 Results . 72
3.6.3 Computational complexity 80

3.7 Conclusion and future work 82

Contents xiii

4 Gesture recognition with temporal convolutions
and recurrence 85

4.1 Introduction . 85
4.2 Related work . 87
4.3 Network architectures 88

4.3.1 Baseline models 90
4.3.2 Bidirectional recurrent models 91
4.3.3 Adding temporal convolutions 92

4.4 Experiments and analysis 93
4.4.1 Data preprocessing 93
4.4.2 End-to-end training 94
4.4.3 Results . 96
4.4.4 Failure cases 101

4.5 Conclusion and future work 105

5 Sign language recognition in video corpora 107

5.1 Sing language video corpora 108
5.1.1 Corpus NGT 108
5.1.2 Corpus VGT 109
5.1.3 ChaLearn LAP ConGD 111

5.2 Isolated sign recognition 113
5.2.1 Data preparation 113
5.2.2 Network architecture and training setup . 114
5.2.3 Results . 116

5.3 Continuous sign language recognition 120
5.3.1 Residual building-block 121
5.3.2 Network Architecture 123
5.3.3 Experimental setup 125
5.3.4 Results . 126

5.4 Conclusion and future work 131

xiv Contents

6 Sing language recognition in TV news broadcasts 135

6.1 VRT news dataset 137
6.2 Methodology . 138

6.2.1 A shared vector space 138
6.2.2 Ranking-based objective 140

6.3 Experiments . 142
6.3.1 Data processing 142
6.3.2 Model architecture and training details . . 144
6.3.3 Results . 145

6.4 Conclusion . 150

7 Conclusions and future perspectives 151

7.1 Summary . 151
7.2 Future directions 154

7.2.1 Future research perspectives 154
7.2.2 Potential applications 156

A Deep belief networks 159

B List of omitted words in subtitles 163

Bibliography 165

1
Introduction

There is an undeniable communication gap between the Deaf
community and the hearing majority. Worldwide, there are 360
million people with disabling hearing loss (WHO, 2012). That
is about 5% of the world’s population. In the United States,
profound and prelingual deafness is present in at least four per
ten thousand children (Marazita et al., 1993). Their written skills
in the language of the hearing environment are significantly more
limited than that of the average hearing person (Van Herreweghe,
1996). Moreover, written communication is impersonal, slow and
unhandy in face-to-face conversations, ranging from exchanges at
the table to a solicitation interview or an academic presentation. It
is often necessary in an emergency situation to communicate with
the emergency doctor where writing is not always possible. An
interpreter can be employed in these kinds of situations. However,
most governments subsidize only a number of hours (if any at all)
for an interpreter per deaf person per year.

To bring this communication barrier further down, we want
to automate the recognition and translation of gestures and sign
language through the processing of video information. Research
to automate this recognition is not only important for people with
a hearing impairment, but also for their colleagues, friends and
family who want to learn the language with a learning software
platform or a dictionary for sign language. Furthermore, large

2 1 Introduction

sign language video corpora (i.e. large collections of recorded
and annotated sign language) are assembled and take huge effort,
time and funding to get annotated. Gesture and sign language
recognition research would help alleviate these costs and speed
up the annotation.

The techniques to address these challenges that are employed
in prior work often assume laboratory circumstances, because the
large variability of sign language is difficult to cope with (Dreuw
et al., 2010; Zaki and Shaheen, 2011; Chai et al., 2013; Ong et al.,
2014; Pfister et al., 2014). A robust recognition system has to be
able to deal with different users, backgrounds, lighting conditions
and variations in gestures like speed or dialect. This robustness
can be provided by the booming research field of deep learning.

Deep neural networks have recently been reinstated by Hin-
ton et al. (2006) and have become an effective approach for
pattern recognition and representation learning. The models
have been successfully applied to a plethora of different domains.
Record breaking results have been achieved in image classification
(Krizhevsky et al., 2012b), speech recognition (Graves et al., 2013),
object detection (Sermanet et al., 2013), human pose estimation
(Toshev and Szegedy, 2014), video classification (Karpathy et al.,
2014) and many more. The great capacity of deep neural net-
works to discover and extract higher level relevant features have
led to widespread adoption in the industry by Google, Facebook,
Microsoft, Amazon and more.

This is why we want to investigate in this thesis how deep
learning models can be employed for automatic gesture and sign
language recognition.

Gesture recognition

Gesture recognition is becoming increasingly important and is one
of the core components in the thriving research fields like human-

1.1 Gesture recognition 3

computer interaction, robotics, video surveillance, user interface
design and multimedia video retrieval. Also, gestures are used
for example at aircraft decks, in busy restaurants, during deep
sea diving or to support spoken language. Furthermore, gesture
identification in video can be seen as a first step towards sign
language recognition, in which even subtle differences in motion
can play an important role.

The recognition of gestures and signs is relatively straightfor-
ward for humans. Our brains are capable of interpreting what we
see. This is why we can almost immediately distinguish different
gestures from each other, even after seeing the gesture only once.
Humans can see where the hands are positioned, in which direc-
tion the arms are moving and how the fingers are stretched or
folded. These interpretation abilities of humans are very complex
neurological phenomenons that are still mostly a mystery. Having
a computer algorithm to mimic this recognition capability is a
very challenging task.

Automatic gesture recognition introduces a series of problems
that aren’t obvious at first sight. This is because they don’t exist
or because they are trivial for humans. Computers and smart
devices are given the capability to “see” by integrating a camera.
This can even be enhanced with depth view by integrating 3D
camera technology. However, the interpretation capabilities of
computers are still far from those of humans in many aspects.
A stream of spatially ordered pixels is the only information a
computer has. The values of the pixels are based on the light
intensity of the captured frame. Consequently, an image captured
in a darker room has completely different pixel values than an
image captured in a well lit environment. The computer observes
a large difference, while both images could have consisted of the
same exact objects.

The large variability of signals that inherently convey the same
meaning is an important factor that makes gesture recognition
a challenging task. The user can stand far away from or close

4 1 Introduction

to the camera, at the left, right, top or bottom of the frame.
Users can be small or tall, have different body proportions, have
different genders or wear different cloths. They are left or right
handed and make very expressive or more modest gestures. The
background of the user can contain disturbing elements, there
can be multiple users in the frame or the room can be badly
lit. Moreover, regular hand motion or out-of-vocabulary gestures
should not to be confused with any of the target gestures. These
problems are just a few examples that ideal recognition systems
should be able to deal with.

To tackle these challenges, previous work on video-based action
and/or gesture recognition focused mainly on adapting hand-
crafted features (Liu et al., 2014b; Shao et al., 2014; Wu and
Shao, 2013). These methods usually have two stages: an optional
feature detection stage followed by a feature description stage.
Well-known feature detection methods are Harris3D (Laptev,
2005), cuboids (Dollár et al., 2005) and Hessian3D (Willems et al.,
2008). For descriptors, popular methods are HOG/HOF (Laptev,
2005), HOG3D (Klaser et al., 2008) and extended SURF (Willems
et al., 2008).

Thanks to the immense popularity of the Microsoft Kinect
3D camera, there has been a surge in interest in developing
methods for human gesture and action recognition from 3D skeletal
data and depth images (Shotton et al., 2011; Wu and Shao,
2014b). Also, a number of new datasets (Escalera et al., 2013;
Fothergill et al., 2012; Guyon et al., 2012; Wang et al., 2012)
have provided researchers with the opportunity to design novel
representations and algorithms, and test them on a much larger
number of sequences.

1.2 Sign language recognition 5

Sign language recognition

Sign languages are full-fledged and accessible languages, and are
the main communication system of many deaf people. Contrary
to popular believe, sign language is not an international language.
The sign language that is used in Flanders is the Flemish Sing
Language and has its own lexicon and grammar, independent from
written or spoken language. The Flemish Sign Language is differ-
ent from the French-Belgian Sign Language used in the Wallonia
region or the Dutch Sign Language in the Netherlands. There are
even about five different dialects or variants of the Flemish Sign
Language used in the corresponding five provinces of Flanders
(Van Herreweghe and Vermeerbergen, 2009). Fortunately, most
signs are shared across dialects.

The existence of regional sign languages means that only a
small group of people understands the local sign language. How-
ever, the communication between deaf people from different coun-
tries is done by using simple and elementary signs and gestures
that are more universally recognized. Also, there are deaf or hard
of hearing people that master a spoken language, because they
haven’t been born deaf or because they learned it to a limited
extend by feeling their voice vibrate.

Sign language recognition (SLR) systems have many different
use cases: corpus annotation, for emergency communication (e.g.,
in hospitals), as a personal sign language learning assistant or for
translating daily conversations between signers and non-signers,
to name a few. Unfortunately, unconstrained SLR remains a big
challenge. All the challenges in gesture recognition cited in the
previous section transfer naturally to SLR. Moreover, additional
problems introduce themselves, making SLR a significantly more
difficult task than gesture recognition in most situations.

An extra problem that arises in SLR is the continuity of the
signs. As opposed to typical gesture recognition tasks, the signs

6 1 Introduction

are performed in rapid succession, sometimes in parallel, and are
communicated through multiple channels concurrently. Further-
more, to transition from one sign to the next there is a movement
transition (movement epenthesis). Also, there is high visible intra-
sign variability and low inter-sign variability compared to common
classification tasks. This means that some signs are visually simi-
lar, making them difficult to distinguish from each other, while
the same sign can be performed differently by different users or
even by the same user. In addition, publicly available annotated
corpora are scarce and not intended for building classifiers in the
first place. Lastly, unlike gesture recognition, we are dealing with
a language. A language has a grammar and separate signs can be
combined to form a bigger unit of meaning.

A common approach in SLR is to get around the high dimen-
sionality of image-based data by engineering features to detect
joint trajectories (Charles et al., 2013), facial expressions (Liu
et al., 2014a) and hand shapes (Ong and Bowden, 2004) as an
intermediate step. Data gloves (Oz and Leu, 2011), colored gloves
(Wang and Popović, 2009) or depth cameras (Chai et al., 2013)
are often deployed in order to obtain a reasonable identification
accuracy. It is only very recently that we see the use of deep
learning models in the SLR field (Koller et al., 2016b; Cui et al.,
2017; Camgoz et al., 2017b).

Research contributions

Gesture recognition with HMMs and 3D CNNs
(Chapter 3)

The ChaLearn Montalbano gesture recognition dataset is a large
collection of videos consisting of 20 different classes of Italian
gestures recorded with a depth-sensing camera. The challenge
is to classify every gesture and to locate the gestures in time

1.3 Research contributions 7

(temporal segmentation).
Inspired by successful approaches in the speech recognition

research field, we propose a data-driven model for this gesture
recognition problem. The segmentation and the recognition of
a continuous stream of gestures are performed in parallel. This
is achieved by integrating deep neural networks within a hidden
Markov model (HMM). A HMM is a statistical model that is
employed, in this case, to model different temporal states of each
gesture.

The depth-sensing camera allows the positional tracking of
skeletal joints. Therefore, a Gaussian-Bernoulli deep belief net-
work (DBN) is presented to extract high-level skeletal joint fea-
tures. The video fragments, including the depth images are
processed with a convolutional neural network (3D CNN). Both
the skeletal features and the video features are fused together to
finally feed them to the HMM. Finally, different fusion strategies
are investigated.

Gesture recognition with temporal convolutions
and recurrence (Chapter 4)

A drawback to the previous method is that the different modules
(HMM, 3D CNN and DBN) act independently from each other
and need to be trained and evaluated in multiple stages. In
this chapter, we unify the modules and stages with an end-to-
end deep neural network, backed by the many recent successes
in the deep learning field. A significant increase in accuracy
is observed with the ChaLearn Montalbano gesture recognition
dataset. Furthermore, the training and the evaluation of the
models are made easier and faster.

Previous research suggests using a simple temporal feature
pooling strategy to take into account the temporal aspect of video.
We demonstrate that this method is not sufficient for gesture
recognition, where temporal information is more discriminative

8 1 Introduction

compared to general video classification tasks. We explore different
deep architectures and propose a new end-to-end trainable neural
network architecture incorporating temporal convolutions and
bidirectional recurrence. Our main contributions are twofold;
first, we show that recurrence is crucial for this task; second,
we show that adding temporal convolutions leads to significant
improvements.

Sign language recognition in video corpora (Chap-
ter 5)

The previous two chapters show that deep neural networks have
great potential for gesture recognition. This gives us an indication
that deep networks could be useful for more complex tasks in the
field. That is why we take it a step further in this chapter by in-
vestigating sign language recognition. The problem is approached
by classifying gestures and signs from sign language corpora: large
collections of sign language video material. The corpora we evalu-
ate our models on are the Flemish Sign Language Corpus (Corpus
VGT), the Dutch Sign Language Corpus (Corpus NGT) and the
ChaLearn LAP RGB-D Continuous Gesture Dataset (ConGD).

Two different setups are analyzed in this chapter. The first
setup considers the classification of isolated signs. Each annotated
sign in the corpora is cut into a video fragment on which we build a
classification model: a convolutional neural network. Furthermore,
we show a method to cope with the fewer Corpus VGT annotations
by transferring the learned features of the larger Corpus NGT. In
the second setup, we research continuous sign language recognition
using 3D residual networks and other recent breakthroughs in
deep learning. We approach the problem as a frame by frame
classification task, in which the temporal locations of the gestures
and the signs are not given during evaluation.

1.4 List of publications 9

Sign language recognition in TV news broadcasts
(Chapter 6)

Many TV broadcasting organizations like the BBC (British Broad-
casting Corporation) or the VRT (Flemish Radio and Television
Broadcasting Organization) are making their news broadcasts
accessible to deaf people by overlaying an interpreter to the screen.
This means that there is a huge amount of data available where
spoken language is translated to sign language. This vast amount
of data presents itself as a challenging and unique machine trans-
lation or video captioning problem where the video stream is the
source and the subtitles are the targets.

Up until now we approached sign language recognition as a se-
quence of individual gestures/signs that are transcribed separately.
However, sign language and written language have no one-to-one
mapping on word level. There is, however, a mapping of meaning.
The meaning of a short sign language sequence can be mapped to
the meaning of a word, a group of words or a sentence. We use
this view of the problem to create our models.

We build a model that tries to embed small fragments of
Flemish TV news sign language video into an established vec-
tor representation of words: Word2Vec trained on the Dutch
Wikipedia.

List of publications

Journal publications
1. Pigou L., van den Oord A., Dieleman S, Van Herreweghe

M. and Dambre J. (2017). Beyond temporal pooling : re-
currence and temporal convolutions for gesture recognition
in video. International Journal of Computer Vision, 11263.

10 1 Introduction

2. Wu D., Pigou L., Kindermans P.-J., Le N., Shao L.,
Dambre J. and Odobez J.-M. (2016). Deep dynamic neural
networks for multimodal gesture segmentation and recog-
nition. Transactions on Pattern Analysis and Machine In-
telligence: Multimodal Human Pose Recovery and Behavior
Analysis SI, 38 (8).

Conference workshops

1. Pigou L., Van Herreweghe M. and Dambre J. (2017). Ges-
ture and sign language recognition with temporal residual
networks. IEEE International Conference on Computer
Vision (ICCV) Workshop: Action, Gesture, and Emotion
Recognition Competitions: Large Scale Multimodal Gesture
Recognition and Real Versus Fake Expressed Emotions.

2. Pigou L., Van Herreweghe M. and Dambre J. (2016). Sign
classification in sign language corpora with deep neural net-
works. International Conference on Language Resources and
Evaluation (LREC): 7th Workshop on the Representation
and Processing of Sign Languages: Corpus Mining.

3. Pigou L., Dieleman S., Kindermans P.-J., and Schrauwen
B. (2015). Sign language recognition using convolutional
neural networks. European Conference on Computer Vision
(ECCV) Workshop: ChaLearn Looking at People: Pose
Recovery, Action/Interaction, Gesture Recognition.

Posters
1. Pigou L., van den Oord A., Dieleman S, Van Herreweghe

M. and Dambre J. (2015). Beyond temporal pooling : re-
currence and temporal convolutions for gesture recognition
in video. Montreal Deep Learning Summer School 2015.

2
Deep learning

This chapter provides an introduction to the concepts, techniques
and models that are commonly used throughout the dissertation.
We start with some fundamental concepts of machine learning in
Section 2.1. Next, we delve deeper into the most important models:
convolutional neural networks (Section 2.3) and recurrent neural
networks (Section 2.4). And lastly, we discuss some common
optimization and regularization techniques in Section 2.5.

Machine learning

Introduction
In a nutshell, machine learning refers to systems and algorithms
that learn patterns from data. Arthur Samuel (1959) defines
machine learning as the “field of study that gives computers the
ability to learn without being explicitly programmed”. Mitchell
(1997) gave the following definition: “A computer program is said
to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by
P, improves with experience E.”.

A predictive model will learn to improve a performance mea-

12 2 Deep learning

sure by gaining experience. The training happens by optimizing
the parameters of a model using machine learning algorithms.
These optimization algorithms ensure that the parameters of the
model will be adjusted iteratively during training. The perfor-
mance measure has to be chosen with care, because it has to
indicate the predictive capacity of the system. During the train-
ing phase the model will be optimized, during the evaluation
phase the model will be evaluated and during the test phase the
final evaluation on unseen data is performed or the system is
placed in the production environment for further testing.

Experience is gained by training the predictive model with
the help of examples in a dataset. The available data is typically
divided into three parts: a training set, a validation set and a test
set. They are used in the training phase, the evaluation phase
and the test phase respectively. The training set is typically the
biggest one, because it is used to determine the parameters of the
model (= learning or training). The validation set and the test
set have to be large enough to attain evaluation and test scores
that are representative for the task at hand.

The test set can not be used during the development of the
model, because we don’t want to build a system that is optimized
for that particular test set. In Section 2.1.2 we go into more detail
on generalization problems.

The type or category of machine learning problem that will get
the upper hand in this thesis is supervised classification. Super-
vised, because the training set consists of pairs of data examples
and the appropriate class labels. In other words, the training set
contains the ground truth for the predictions. The identification
or prediction of the class to which a new example belongs, is
called classification. A new example is an unseen data point that
doesn’t occur in the training set. The output of the model is
typically an array of probabilities, one for each class.

A classification problem in machine learning can be described

2.1 Machine learning 13

as follows. Given a training set T :

T = {(x(n), y(n))} ,x(n) ∈ RD, y(n) ∈ N, n = 1, ..., N (2.1)

with x(n) the nth data point with class label y(n), D the number
of dimensions of x, and N the number of training samples. The
classification problem aims at approximating a model f with
parameters θ so that:

f(x,θ) = y, ∀(x, y) ∈ T. (2.2)

The final trained classification model is an approximation of f
and θ. The unknown class y of a new sample xnew is predicted
by f(xnew,θtrained) = ŷ. A well known and highly successful type
of models for classification tasks are neural networks. This type
of model is used in the majority of this thesis and is described in
Section 2.2.

Overfitting and generalization
Overfitting is a phenomenon where performance measures are
significantly lower when the model is evaluated on new unseen
data points. The cause can be a model that is too complex
with too many parameters or a training set that isn’t sufficiently
large or isn’t representative. In other words, the model does not
generalize and doesn’t recognize patterns in data that doesn’t
occur in the training and/or validation set. Generalization is
therefore the capacity to make accurate predictions on new and
unseen data samples.

It is said that the model “memorizes” the training data when
overfitting. It is modeling the noise and imperfections by trying
to attain the exact estimate (or at least a very accurate approxi-
mation) of f and θ in Equation (2.2). The creation of a validation
set is a way to somewhat counter this. Now the goal is no longer
to estimate f and θ as close as possible. Instead, the evaluation

14 2 Deep learning

score for the validation set is optimized by tuning higher level
parameters (hyper-parameters) of the model (e.g., its complexity).

However, now the problem is that the model is optimized
on the validation set and so the model can still overfit on that.
We can not guarantee that the performance is similar for data
outside of the validation and training set. This score is still not
representative for the predictive capacity of the model. Therefore,
an additional set is created, the test set. The difference with the
validation set is that the test set can never serve as a means to
adjust the model with the goal to increase performance on the
test score. In the ideal case, the test set is used only once for
the final evaluation. As a rule of thumb, the available data is
typically split as follows: 60% of the data serves as the training
set, 20% validation set and 20% test set. To be clear, this will not
improve the generalization capacity, but the test score will display
a better indication of the generalization than the validation score.
Instead, regularization methods are employed to achieve better
generalization.

Neural networks

Artificial neural networks (ANNs) are loosely inspired by the
neural network in a biological brain. A human brain has about
one hundred billion neurons that are connected with each other in
a complex network. Neurons are self-contained processing units
that form the building stones of the nervous system. They receive,
process and send information through the brain and the body.
An artificial neuron imitates this by means of an input signal,
input weights, a bias, a summation, an activation function and
an output signal as depicted in Figure 2.1.

2.2 Neural networks 15

x2 w2 Σ
Activation

y

Outputx1 w1

Weights

x3 w3

Bias
b

Input

Figure 2.1: A schematic overview of an artificial neuron
with three input dimensions.

An artificial neuron can be formally described as follows:

yneuron = a
(
b+

D∑
i=1

xiwi

)
(2.3)

where xi is the ith input of the neuron, y the output, a the
activation function, b the bias and wi the weight connecting the
ith input.

The activation function provides the non-linearity in the net-
work. This enables solving non-linear classification problems and
will therefore improve the predictive capabilities. The artificial
neurons are often named after their activation function. Examples
of popular neurons (also called units) are illustrated in Figure 2.2
and have the following definition.

Rectified linear unit (ReLU): a(x) = max(0, x)
Leaky rectified linear unit (LReLU): a(x) = max(x, βx)

Exponential linear unit (ELU):

a(x) =

x , x > 0
β(exp(x)− 1) , x ≤ 0

(2.4)

All three activation functions above are linear for positive inputs.
ReLUs saturate to 0 for all negative values, ELUs saturate to -1
with a smoothing transition and LReLUs don’t really saturate.

16 2 Deep learning

−5 −4 −3 −2 −1 0 1

x

−1

0

1

a
(x

)

ReLU

LReLU

ELU

Figure 2.2: Three examples of activation functions.
LReLU with β = 0.2 and ELU with β = 1.0.

At first sight, ReLUs might cause problems at their discontinuity
at the origin for calculating derivatives. In practice, the pre-
activation (the values before the activation function) are never
negative for all samples in the training set. It is sufficient for the
unit to train that for only a small amount of training data points
the pre-activation is greater than zero.

The artificial neurons are usually organized in layers. In fully
connected (dense) feedforward networks, all neurons in a layer
receive input from all neurons in the previous layer (Figure 2.3).
The output of the jth hidden layer h(j)(x) is defined by:

h(j)(x) =


a
(
b(j) +W (j)x

)
, j = 1

a
[
b(j) +W (j)h(j−1)(x)

]
, 1 < j ≤ L

(2.5)

with L the number of hidden layers and W (j)x the inner product
of the input with the weights (i.e. a weighted summation of
the input). The number of layers and the number of hidden
units in each layer are hyper-parameters that are optimized by
evaluating on the validation set. Hyper-parameters are all the
model parameters that are not adjusted with the main learning
algorithm during training.

2.2 Neural networks 17

x1

x2

x3

x4

x5

h
(1)
1

h
(1)
2

h
(1)
3

h
(2)
1

h
(2)
2

P (y = 1|x)

P (y = 2|x)

W (1)
W (2)

W (3)

1 b(1)
1 b(2)

1 b(3)

Input Hidden Hidden Softmax

Figure 2.3: A fully connected neural network with two
classes, four input dimensions and two hidden layers.

The first layer is the input layer, the last layer is called the
output layer or (for classification tasks) the softmax layer. All
layers in between are referred to as hidden layers. The input layer
takes values from the data samples that are being classified. The
softmax layer gives predicted probabilities for each class. These
neurons have a different purpose: they produce the predicted
probabilities for each class:

a′(x) = b(L+1) +W (L+1)h(L)(x)

P (y = j|x) = exp[a′(x)j]∑C
i=1 exp[a′(x)i]

softmax(x) = [P (y = 1|x) , . . . , P (y = C|x)]T .

(2.6)

The function a′ is the pre-activation (the value before the acti-
vation function) of the last hidden layer and C is the number of
classes. P (y = j|x) is the predicted probability that y, the class
index to predict, is equal to the class index j, given the input x.

The fully connected neural network can be described as the
classification model f :

f(x,θ)j = softmax(x,θ)j = P (y = j|x,θ) (2.7)

18 2 Deep learning

L(θ)

θ

∇L(θ)

Figure 2.4: A local minimum of the loss function L(θ)
is found by taking steps in the direction of the gradient
∇L(θ).

with trainable parameters θ:

θ = {W (1), b(1), . . . ,W (L+1), b(L+1)}. (2.8)

If only one single predicted class is required instead of the proba-
bilities, one can select the class with the highest probability:

y = arg max
j

f(x,θ)j. (2.9)

The parameters θ are values that are initially chosen at random.
In the case of neural network, they are adjusted iteratively during
the training phase with gradient descent, which is discussed in
the next section.

Gradient descent
Gradient descent is an algorithm that minimizes the output of
a function L(θ), the loss function (also called the cost function
or the objective). To find the minimum of L(θ), the parameters
θ are updated step by step based on the gradients of the loss
function relative to all the parameters in the parameter space:
∇θL(θ). A simple example is illustrated in Figure 2.4. Said

2.2 Neural networks 19

informally, the gradients describe the “slopes” of the loss function
in the parameter space. Every iteration a step is taken in the
direction where the slope is the steepest downward. This means
that the parameters θ of the model are adjusted iteratively by
the following update rule:

θ ← θ − α∇θL(t,θ) (2.10)

with α the learning rate (a hyper-parameter) and ∇θL(t,θ) the
gradient of the loss function L at iteration step t. The learning
rate α has a big influence on the learning algorithm. A value
for α that is too small will result in a slow convergence and a
value that is too large will result in overshooting the minimum,
where the parameter values make large jumps. In the context of
neural networks, the gradients are calculated with backpropaga-
tion. Backpropagation is an algorithm that will propagate the
gradients of the sample in the reverse direction and will update
the parameters based on this.

First we have to define a derivable function that we would
want to minimize. The function that is most appropriate for
supervised classification problems is the negative log-likelihood:

E(f(x,θ), ylabel) = − ln f(x,θ)ylabel

= − ln P (y = ylabel|x,θ)
(2.11)

The negative log-likelihood takes the predicted probability for
the correct class corresponding with the input sample x. This
probability is produced by the softmax layer of the neural network.
Ideally, we want this value to be as close to one as possible. By
performing the negative ln on this probability, values closer to
zero will be punished more, because the limit to zero is equal to
infinity.

The negative log-likelihood E considers a single sample x. We
want to minimize this function for every sample. This is why we

20 2 Deep learning

define the final loss function as follows:

L(θ) = 1
N

N∑
n=1

E(f(x(n),θ), y(n)) + Ω(θ) (2.12)

The first part of the loss function calculates the average cost
of the predicted probabilities. The second part, Ω(θ), is the
regularization term. This will typically constrain the values of θ
to prevent overfitting.

The regularization term is not always present in the loss
function, but can help a predictive model to generalize. Extreme
weight values can often be an indication of overfitting on the
training set. The regularization term will make sure to restrain
these extremities. This is done by involving the weights of the
model in the loss function:

Ω(θ) = γ
∑

k

∑
i

∑
j

|W (k)
ij |︸ ︷︷ ︸

`1 regularization

+λ
∑

k

∑
i

∑
j

(W (k)
ij)2

︸ ︷︷ ︸
`2-regularization

(2.13)

The hyper-parameters γ and λ determine the amount of `1 and
`2 regularization respectively. `1 regularization determines the
degree each weight is penalized in proportion with their absolute
value, resulting in sparser weights. By squaring, the `2 regulariza-
tion punishes large values a lot more and small values a lot less,
resulting in weights that are kept small.

The loss function as defined in Equation (2.12) has a high
computational cost. It has to evaluate the error function for all
data samples in the training set before an update step can be
performed. Mini-batch gradient descent is applied to solve this
problem. To make an estimation of the current loss function,
only a random part (a mini-batch) of the training samples are
considered in every iteration:

L(t,θ) = 1
B

B(t+1)∑
n=Bt+1

E(f(x(n),θ), y(n)) + Ω(θ) (2.14)

2.2 Neural networks 21

The size of the mini-batch B is a hyper-parameter and t is the
current iteration.

Deep learning

The field of deep learning (Lecun et al., 1998; Hinton et al., 2006;
Bengio et al., 2007; Bengio, 2009) is a subfield of machine learning.
A deep learning model learns which representation of the input
is optimal for classification during the training phase. In other
words, the input is converted to a learned representation that
is easier for a linear model to classify. This happens with a
hierarchical network of different subsequent neuron layers. The
first layers extract low-level features like different edges in an
image. The next layers build upon these features to create more
high-level features. For example, fingers are formed from specific
combinations of edges in the frame and in the next layer these
fingers form a hand. The features are learned by neural networks
with multiple layers instead of manually extracted.

With traditional methods, feature engineering is a necessity
before feeding the input to a classification method due to the
curse of dimensionality. This means that one has to select a
number of features and make an explicit implementation for the
extraction. Deep learning is able to cope with high dimensional
input, given enough data and computational power, because it
can learn features without explicitly describing which features it
should extract. For example, raw input pixels can be used for
image classification as input and this often results in state-of-the-
art performance.

A standard feature extraction layer in a deep learning model
is depicted in Figure 2.5a.

Typically, the input is first normalized to speed up the learn-
ing. The filter bank performs an expansion of the input. This
expansion is needed to better distinguish the different classes.
The filter bank is highly parametrized with trainable weights.

22 2 Deep learning

Norm-
alisation

Filter
bank

Nonlin-
earitity Pooling

Feature extraction layer

(a) One feature extraction layer.

Input Layer 1 . . . Layer n Classification

(b) Multiple feature extraction layers.

Figure 2.5: A feature extraction architecture in deep
learning.

Subsequently, a nonlinear module is applied to be able to make
nonlinear differentiations. Lastly, the interesting parts are pooled
together. The pooling operation will filter each local window or
partition to one single value by, for example, only keeping the
maximum. This will reduce the dimensionality and throw away
redundant information. Multiple layers are concatenated and the
final representation is used for classification (Figure 2.5b).

One of the most successful models in deep learning are convo-
lutional neural networks which are discussed in the next section.

Convolutional neural networks

The deep learning model that achieves state-of-the-art results in
recent years is the convolutional neural network (CNN). Research
proves that CNNs break the records in many image recognition
problems (Krizhevsky et al., 2012a; Cireşan et al., 2012; Zeiler
and Fergus, 2013; Goodfellow et al., 2013) and are applied in
many industry applications.

Convolutional neural networks are feature extraction models

2.3 Convolutional neural networks 23

... ...

(a) Fully connected.

... ...

(b) Local connectivity.

Figure 2.6: Receptive fields.

in the deep learning field. They are very loosely inspired by the
visual cortex in our brain. The hierarchical multi-layered artificial
neural networks are able to recognize visual patterns directly from
raw pixel information without or with minimal preprocessing.

The problem with fully connected neural networks, as de-
scribed in Section 2.2, is the dense connectivity between the
different hidden layers. The number of parameters is directly re-
lated to the input dimension, as shown in Figure 2.6a, rendering
these models unsuitable for high dimensional data like images or
videos. That is why a better solution is to connect each unit to a
local area of the input image as depicted in Figure 2.6b. The local
areas are called receptive fields. Apart from local connectivity in
CNNs, the weights between certain units are also shared. This
means that the units in Figure 2.6b have exactly the same set of
weights. If the receptive fields have a size of 5x5, only 25 weights
are needed (per input channel and per feature map, see further).

A CNN consists of subsequent feature extraction layers (also
called convolutional layers). Every layer consists of mainly two
base operations: a filter bank and a pooling module. A filter
bank consists of feature maps that are obtained by performing
two dimensional discrete convolutions with different filters on
the input. The pooling module typically employs max pooling,
although there are other sub-sampling methods that can be used.

24 2 Deep learning

Max pooling reduces the dimensionality by only keeping the most
important activations from the feature maps.

Filter bank
The local connections in a CNN are in essence discrete convo-
lutional filters (Figure 2.7a). A filter bank consists of multiple
feature maps, each with a different filter as illustrated in Figure
2.7b. The number of feature maps per layer in a CNN are hyper-
parameters. Besides convolutions, a bias is added and a nonlinear
activation function is applied. Traditionally, only 2D feature maps
are extracted in images and video frames, but 3D convolutions
are not uncommon in recent research. The filter banks can be
formally described as follows:

Y (ij) = a
b(i)

j +
Ni∑

n=1
W (ijn) ∗X(in)


2D: Y (ij)

pq = a
b(i)

j +
Ni∑

n=1

Pi∑
p′=1

Qi∑
q′=1

W
(ijn)
p′q′ X

(in)
p−p′,q−q′


3D: Y (ij)

pqr = a
b(i)

j +
Ni∑

n=1

Pi∑
p′=1

Qi∑
q′=1

Ri∑
r′=1

W
(ijn)
p′q′r′xX

(in)
p−p′,q−q′,r−r′


(2.15)

where Y (ij)
pqr is the pixel at position (p, q) of the rth frame in the jth

feature map of the ith layer and W (ijn) are the filter parameters
that the jth output channel connects with the nth input channel
in the ith layer. Ni is the number of input channels for the
ith layer. The sizes of the filters in the ith layer are Pi xQi and
Pi xQi xRi (height x width x frames) for the two dimensional and
three dimensional case respectively.

2.3 Convolutional neural networks 25

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2
W00

W01

W02

W10

W11

W12

W20

W21

W22 1,1

Input
3x3 Filter

Output

(a) A 2D discrete convolution.

Input Feature maps

(b) A filter bank.

4

13

6
3

13

18

13

16

3

15

14

13

3
1

10

7 16
14

18
15

4x4 Input
2x2 Output

max→

(c) Max pooling with 2x2 partitions.

Figure 2.7: The base operations in a convolutional layer
of a convolutional nerual network.

26 2 Deep learning

Max pooling
The second base operation in a CNN layer is max pooling. This
will split every feature map into small partitions. Subsequently,
only the maximum value of each partition is kept, as shown in
Figure 2.7c. This will reduce the dimensionality while the most
important feature values (the maximum values) are kept.

In this thesis, we mostly work with video data and that is why
we use three dimensional feature maps and 3D max pooling. To
describe this formally, we use a window function VS1xS2xS3(p, q, r)
that is zero everywhere except for the partition with size S1xS2xS3

where the maximum is taken:

Y (ij)
pqr = max

(
X(ij)VS1xS2xS3(p, q, r)

)
. (2.16)

Max pooling will introduce some degree of translation invari-
ance as well. For example, if a hand is shifted a few pixels to the
left or right, the hand features will be pooled together to the same
position in the feature map. The same applies to translation in
the time dimension.

Complete network
By using both operations above, convolutions and max pooling,
a convolution layer in a CNN is formed. But CNNs wouldn’t
be part of deep learning if they weren’t deep. That is why
multiple layers are stacked and the final representation is fed as
input to a classification module, as seen in the example in Figure
2.8.

A CNN has a deep architecture so that it can extract small-
scale features, like edges, in the first layers and the last layers can
extract large features like fingers or hands. This is because the
features are pooled with max pooling.

In
pu

t
vi
de

o
Fe

at
ur

e
m

ap

C
on

vo
lu

ti
on

s
C

on
vo

lu
ti

on
s

C
on

vo
lu

ti
on

s
P

oo
lin

g
P

oo
lin

g
P

oo
lin

g

Flatten

C
on

v.
la
ye
r
1

C
on

v.
la
ye
r
2

C
on

v.
la
ye
r
3

D
en

se
N
N

Fe
at
ur
e
ex
tr
ac
tio

n
C
la
ss
ifi
ca
tio

n
Fi

gu
re

2.
8:

An
ex
am

pl
e
of

a
th
re
e
di
m
en
sio

na
lc

on
vo
lu
tio

na
ln

eu
ra
ln

et
wo

rk
wi
th

fo
ur

fe
at
ur
e
m
ap
s
in

th
e

fir
st

la
ye
r,
ei
gh

t
m
ap
s
in

th
e
se
co
nd

la
ye
r
an
d
six

te
en

in
th
e
th
ird

.
A

fu
lly

co
nn

ec
te
d
(o
r

de
ns

e)
ne
ur
al

ne
tw
or
k
wi
th

on
e
hi
dd

en
lay

er
is
st
ac
ke
d
on

to
p.

28 2 Deep learning

htht-1 ht+1

yt-1

xt-1 xt xt+1

yt yt+1

Figure 2.9: A high-level overview of a recurrent neural
network (RNN).

Recurrent neural networks

CNNs are successful at learning features in structured data, in
which patterns can be found locally and hierarchically (images for
example). However, they are less suited to extract features with
medium- to long-distance dependencies. For example, a single
frame in a sign language or gesture video is often not enough to
recognize the sign. It is only by accumulating information from
previous and/or subsequent frames that we might classify the
frame correctly. This is where recurrent neural network (RNN)
come in. They are especially effective at modeling time series.

The core idea of a RNN is to create internal memory to
learn the temporal dynamics in sequential data. This memory is
implemented as a hidden state that evolves each time step. The
next hidden state is determined based on the input of the RNN
and the current hidden state. The output of the RNN can be
the hidden states or an aggregation of the hidden states. This
way, the information from previous steps is also propagated to
the current output.

Describing this formally, a RNN computes the current hidden
state ht based on the input xt and the previous hidden state ht−1

(Figure 2.9):
ht = H(xt,ht−1), (2.17)

where H represents a recurrent layer and depends on the type

2.4 Recurrent neural networks 29

Whh

Wxh

ht

xt

ht-1 a

Figure 2.10: A standard recurrent neural network cell.

of memory cell. There are two different cell types in widespread
use: standard cells and long short-term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997; Gers et al., 2003). They are
both described in the next subsections.

Finally, if we want to build a classifier on top of the RNN, we
can simply use the hidden states ht as input of a softmax layer
to output the predictions yt of each time step t:

yt = softmax(Wyht + by), (2.18)

where Wy and by are trainable parameters. Or, as stated above,
the hidden states from a number of past time steps can be con-
catenated.

Standard cell

Standard cells (Figure 2.10) weigh the input vector xt with train-
able parameters Wxh and sum with the previous hidden units
ht−1, weighted by Whh, and a bias bh. Standard cells are defined
by

ht = a(Wxhxt +Whhht−1 + bh), (2.19)

where Wxh, Whh and bh are trainable parameter vectors and a is
a chosen nonlinear function.

30 2 Deep learning

ht-1

◦

◦

◦
+

tanh

ct-1

xt

ht

ct

σ σ σ

tanh
ft it

ot

Figure 2.11: A long short-term memory cell.

This is the basic type of cell and can be an elegant solution
due to its simplicity. Unfortunately, in practice standard cells are
not very successful at modeling long-term dependencies.

Long short-term memory cell
LSTM cells are more complex, but their structure allows them to
remember past information for much longer, hence the name. This
enables them to capture more long-range temporal dependencies.
A LSTM cell is depicted in Figure 2.11 and can be described as
follows:

it = σ(Wxixt +Whiht−1 + bi), (2.20)
ft = σ(Wxfxt +Whfht−1 + bf), (2.21)
ot = σ(Wxoxt +Whoht−1 + bo), (2.22)
gt = tanh(Wxgxt +Whght−1 + bg), (2.23)
ct = ft ◦ ct−1 + it ◦ gt, (2.24)
ht = ot ◦ tanh(ct), (2.25)

where ◦ denotes the element-wise multiplication of two matrices,
all parameters referred by W., or b. are trainable. it is called
the input gate, ft the forget gate, ot the output gate and σ is a

2.5 Optimization and regularization techniques 31

sigmoid function.
This cell type has a special hidden state, namely the cell state

ct, the top horizontal line in Figure 2.11. The cell state is holding
memory through the time steps. There are two gates that can
influence the cell state: the forget gate ft and the input gate
it. The forget gate dictates which cell states should be kept and
which should be removed. The input gate is the way to store
information in the cell state. And finally, the output gate ot

provides a filter to apply on the cell state, determining the hidden
state ht.

Optimization and regularization tech-
niques

If we would build a predictive model with the methods described
so far, a good performance could be achieved. But some important
techniques can improve this performance significantly. These are
adjustments and additions on top of the base operations that
improve either the generalization and/or the speed of the training
phase. This section assumes that these methods are applied to
CNNs and fully connected neural networks.

The four main methods that are discussed here are normaliza-
tion, momentum, dropout and data augmentation. Normalization
and momentum will improve both the performance and the conver-
gence speed. On the other hand, dropout and data augmentation
are techniques that decrease the training speed, but regularize
the model (improve generalization).

Normalization
We want to control and normalize the distribution of the input
data and even the activations in every layer during training. This

32 2 Deep learning

alleviates some variances that the network doesn’t have to learn
anymore. Normalization comes in many forms, but the ones used
in thesis are ZMUV normalization, local contrast normalization
(LCN) and batch normalization.

ZMUV stands for “zero mean unit variance”. As the name
suggests, this method tries to normalize by shifting the mean value
to zero and scaling the variance to one (N(0, 1) distribution). This
is typically performed on the input data, where either each sample
or each input feature is ZMUV normalized. First the mean and the
standard deviation are determined. The mean value is subtracted
from the input. Next we divide by the standard deviation:

Yij = Xij − µij

σij

(2.26)

with Yij the resulting normalized pixel, Xij the input pixel, µij

the mean and σij the standard deviation.
A second method is local contrast normalization (LCN) (Jar-

rett and Kavukcuoglu, 2009). This technique employs a Gaussian
blur filter that is applied on the image and subtracted from the
original. This results in keeping only pixel values that change a
lot in the spatial domain, like edges. It is a form of high-pass
filter. Next, the absolute values of the pixels are normalized by
dividing by the local standard deviation:

Vij = Xij −
∑
pq

kpqXi+p,j+q

Yij = Vij

max(σ̄ij, σij)
σ2

ij =
∑
pq

kpqX
2
i+p,j+q

(2.27)

where Vij is the result of the local subtraction, kpq the values of the
normalized Gaussian filter and σij the local standard deviation.
The end result is depicted in Figure 2.12. LCN can be applied per
sample on all feature maps in every layer of a CNN. It takes care

2.5 Optimization and regularization techniques 33

LCN

(a) Dark background, low contrast

LCN

(b) Light background, high contrast

Figure 2.12: Local contrast normalization.

of local and spatial competition between feature which can even
result in better generalization. In a variant on Equation (2.27)
neighboring feature maps could be involved in the normalization.

The last technique, batch normalization (Ioffe and Szegedy,
2015), is a more recent one and has become a standard. This
method ZMUV normalizes (Equation (2.26)) the distribution of
each pre-activated feature in each layer across each mini-batch.
Furthermore, an additional scale and shift are learned with train-
able parameters:

Zij = γYij + β. (2.28)

with Zij the output pre-activation, γ and β trainable parameters
and Yij the ZMUV normalized outputs from Equation (2.26) across
the mini-batch. Batch normalization results in a faster training
convergence and a better or on-par performance. Furthermore,
the noise introduced from normalizing only across a (small) mini-
batch regularizes the network.

34 2 Deep learning

Improved gradient descent update rules
The update rule in Equation 2.10 doesn’t guarantee a good con-
vergence. The non-convexity of neural networks makes it hard
to not get stuck in suboptimal local minima. Furthermore, a
constant learning rate is assumed for all parameters. The update
rule can be improved by considering higher-order moments of the
gradients and having adaptive learning rates.

Momentum

Momentum is an optimization technique that can be compared
to the momentum concept from physics. If a ball is rolling from
a slope into a valley, it will not suddenly stop on the lowest point.
The ball will roll a while longer due to its momentum. In the case
of gradient descent, a local minimum will be searched and could
get stuck in this point. If momentum is added to the algorithm
during the training phase, it will roll over the small dents in the
parameter valley, informally said.

This is achieved by slowing down the rate of change of the
parameter updates. An adjustment will be, for example, for 90%
the same as the previous one and for 10% in the direction and size
as the current gradient. In this case the momentum coefficient
is equal to 0.9. This also filters the noisy updates caused by the
small mini-batches.

The new update rule with momentum is defined as follows:

vt+1 = µvt − α∇θtL(t,θt)
θt+1 = θt + vt+1

(2.29)

where µ ∈ [0, 1] is the momentum coefficient (a hyper-parameter).

Nesterov’s accelerated gradient

Sutskever et al. (2013) brings the importance of momentum in

2.5 Optimization and regularization techniques 35

g(θa)

θa
g(θb)

θb

θlocal_min

(a) Parameter space

θt+1

g(θt)

θt

µvt

θlocal_min

(b) Classic momentum

θt+1

g(θt + µvt)
θt

µvt

θlocal_min

(c) Nesterov’s accelerated gradient

Figure 2.13: The difference between classic momentum
and Nesterov’s accelerated gradient (NAG). The gradient
tensor is abbreviated here as g(θt) = −α∇θtL(t,θt).

deep learning to light and compares the classic momentum with
Nesterov’s accelerated gradient (NAG). NAG can be described as
follows:

vt+1 = µvt − α∇θtL(t,θt + µvt)
θt+1 = θt + vt+1

(2.30)

The difference is that with NAG an estimated step (θt + µvt)
is taken before calculating the gradients. Before updating the
parameters, the current momentum component µvt is added to
θt followed by the calculation of the gradients. Figure 2.13 makes
it clear that this produces a more favorable update, because the
final point is closer to the local minimum.

36 2 Deep learning

Adam: adaptive moment estimation

In this thesis, we often make use of the Adam update rule (Kingma
and Ba, 2015). The name Adam is derived from adaptive moment
estimation. Adam makes an estimate of the first and second
moments of the gradients to compute individual learning rates
for each parameter:

mt = β1mt−1 + (1− β1)∇θtL(t,θt),
vt = β2vt−1 + (1− β2) (∇θtL(t,θt))2 ,

m̂t = mt

1− βt
1
,

v̂t = vt

1− βt
2
,

θt+1 = θt − α
m̂t√
v̂t + ε

,

(2.31)

where mt and vt are estimates of the first and second moment of
the gradients respectively and β1, β2, ε are hyper-parameters.

We found that Adam works great in practice, especially when
experimenting with very different layer types in the same model.
Leaving the proposed hyper-parameters of Adam untouched (β1 =
0.9, β2 = 0.999 and ε = 10−8), we observed improved training
convergence in comparison to NAG.

Dropout
Dropout is a regularization method first discussed in Hinton
et al. (2012). This is a technique that will adjust the neural
network during the training phase so that the model is more
robust at inference. Every unit will be disabled with a probability
Bernoulli(p) for every training sample that run through. The
output of the neuron will be set to zero. The hyper-parameter
p is usually kept at 0.5 so that on average half of the units are
dropped out. This is only relevant in the training phase, so the

2.5 Optimization and regularization techniques 37

output of the units have to be scaled with a factor 1/(1−p) during
training.

This technique makes sure that co-adaptation between units
is discouraged. Co-adaptation is the phenomenon that units rely
on each other to recognize patterns. Units might turn useless
without dropout, because others are doing all the work anyway.
With dropout, all units are gone for half of the time, so they are
not able to co-adapt. This will render each neuron more useful
on its own.

Data augmentation
A last important regularization technique is data augmentation.
The best way to counter overfitting is to attain more data. This
is of course not always a possibility. However, data augmentation
can help create artificial data samples. This is done by augmenting
existing training samples. Augmentation can be achieved on many
different creative ways, but the most common are image and video
affine transformations and the addition of noise. A number of
examples of data augmentation are (see Figure 2.14): image
rotations, spatial and temporal translations, cropping or zooming
(i.e. oversampling in time and/or space), elastic image distortions
and white Gaussian noise and impulse noise.

(a) Translations (b) Rotations

(c) Zooming (d) Noise

Figure 2.14: A number of examples of data augmenta-
tion.

3
Gesture recognition using

HMMs and 3D CNNs

Gesture recognition based on 3D videos and 3D joint positions
is a challenging task. This is due to several factors. First, there
is the high dimensionality of the input and the huge variability
with which the poses and movements are made. A second aspect
that further complicates the recognition is the segmentation of
different gestures. In practice, segmentation is as important as
the recognition, but it is an often neglected aspect of the current
action recognition research, in which it is often assumed that
presegmented sequences are available (Laptev, 2005; Marszałek
et al., 2009; Kuehne et al., 2011). In this chapter we aim to
address these issues by proposing a data driven system. As this
chapter is quite technical, we provide an introduction in the first
section, explaining our goal and methodology on a higher level.

We focus on continuous acyclic video sequence labeling, i.e.
video sequences that are non-repetitive as opposed to longer repet-
itive activities, e.g. jogging, walking and running. By integrating
deep neural networks within a hidden Markov model (HMM)
temporal framework, we can jointly perform online segmentation
and recognition of this continuous stream of gestures. The pro-
posed framework is inspired by the discriminative HMM, which
embedded a multilayer perceptron inside an HMM, and was used
for continuous speech recognition (Renals et al., 1994; Bourlard
and Morgan, 1994). This chapter is an extension of the works

40 3 Gesture recognition using HMMs and 3D CNNs

of Wu and Shao (2014c), Wu and Shao (2014a) and Pigou et al.
(2014). The key contributions can be summarized as follows:

• A Gaussian-Bernoulli deep belief network is proposed to
extract high-level skeletal joint features and the learned
representation is used to estimate the emission probability
needed to infer gesture sequences;

• A 3D convolutional neural network is proposed to extract
features from 2D multiple channel inputs like depth and
RGB images stacked along the 1D temporal domain.

• Intermediate and late fusion strategies are investigated in
combination with the temporal modeling. The results of
both mechanisms show that multiple-channel fusions out-
perform individual modules.

• The difference of mean activations in intermediate fusion
due to different activation functions is analyzed. This is
a contribution itself, and should spur further investigation
into effectively fusing various multimodal activations.

Introduction

The Montalbano dataset, detailed in Section 3.3, is used through-
out the current and the next chapter. The dataset consists of
annotated gesture videos recorded with a Microsoft Kinect 3D
camera. This camera allows the recording of multiple types of
data, i.e. multimodal data. An image, a depth map and the
position of the skeletal joints are collected for every frame. This
multimodal nature of the problem and the fact that gesture se-
quences have variable length are the two most important aspects
that we will tackle in this chapter.

3.1 Introduction 41

Modeling variable length sequences with
HMMs

Different users perform gestures with different speeds resulting
in gesture sequences with a variable length. To tackle this, we
employ hidden Markov models (HMMs) (Section 3.4.2). The
HMM is an important machine learning model for time series
processing. They are especially popular in the field of speech
recognition and language processing.

A HMM models a sequence of observations, generated by
hidden states. For example, a person wearing an umbrella is an
observation that suggests a high probability of an unobservable
rainy weather state (= hidden state) in a weather model. In our
case, the observables consists of the features that are extracted
from the recorded multimodal frames. To define the hidden states
that generate these observables, we assume that a gesture is
performed in five stages (= five hidden states). The five stages are
assigned by dividing the sequence into five approximately equal
sized groups of frames. One additional hidden state is added, the
ergodic state, which is a catch-all state that represents silences,
noisy gestures and out-of-vocabulary gestures. To show how this
model can cope with gesture sequences of variable length, we
illustrate an example in Figure 3.1.

Finally, to completely define a HMM, we need to determine the
transition probabilities and the emission probabilities. A transition
probability models a transition between two hidden states and
an emission probability models the likelihood of an observable
given a hidden state. To go back to our example, rainy weather
is more likely to stay rainy than to become sunny. The transition
probability is high from the hidden state “rainy” to the same
hidden state “rainy” than from “rainy” to “sunny”. In rainy
weather, we are more likely to see an umbrella than sunglasses.
The emission probability is high from the hidden state “rainy” to
the observable “umbrella” and low to the observable “sunglasses”.

42 3 Gesture recognition using HMMs and 3D CNNs

ES

1 2 3 4 5

Fast gesture: ES - 2 - 3 - 5 - ES
Slow gesture: ES - 1 - 1 - 1 - 1 - 2 - 2 - 3 - 3 - 4 - 4 - 4 - 5 - 5 - ES

Figure 3.1: This state diagram shows the five gesture
stages and the possible transitions between them. Se-
quences of variable length can be modeled as shown in
the examples.

In our case, we determine the transition probabilities for the
five stages of the gestures and the ergodic state simply by counting
each transition in the dataset. Calculating the emission probabili-
ties is the challenging part and this is where we use deep neural
networks. Note we have to use one HMM for every gesture class,
because the transition and emission probabilities are different for
every class.

Learning emission probabilities with two
modalities

To determine the emission probabilities of the HMM we split
our approach into two modules: (i) a RGB-D module using a
3D convolutional neural network (3D CNN) on the images and
the depth maps, and (ii) a skeleton module using a deep belief
network (DBN, see Appendix A for more details) on the skeleton
joint positions.

The first modality, the RGB-D module, uses small fragments
of the active hand and the body as input for the 3D CNN. The

3.2 Related work 43

network is trained using a classification objective to predict the
gesture class and the gesture state (hidden state). This means
that there are 5× 20 + 1 = 101 classes in total.

The second modality, the skeleton module, uses a DBN to
model the skeleton joint positions of the upper body. The differ-
ence between a feed forward neural network and a DBN is that
a DBN has undirected connections between some layers. These
layers are called restricted Boltzmann machines (RBMs) and are
trained layer-by-layer with an unsupervised learning algorithm.
This means that the model is initially not trained to discriminate
between classes. Instead, the method tries to model the patterns
in the input data without involving the class labels. This is called
generative pretraining. The generative pretraining phase is fol-
lowed by a discriminative fine-tuning phase where the emission
probabilities are predicted.

The motivation for using a DBN for modeling the emission
probabilities from skeleton joints is that by learning the network
layer by layer, semantically meaningful high level features for
skeleton configurations will be extracted while at the same time
a parametric prior of human pose is learned.

Lastly, we combine both modalities with a late fusion strat-
egy and a intermediate fusion strategy to calculate the final
emission probabilities. The late fusion strategy combines the
emission probabilities of both modules with a linear combination.
The intermediate fusion strategy concatenates high-level features
learned by each module and learns the emission probabilities by
fine-tuning the whole network.

Related work

Gesture recognition has drawn increasing attention from researchers,
primarily due to its growing potential in areas such as robotics,
human-computer interaction and user interface design. Differ-

44 3 Gesture recognition using HMMs and 3D CNNs

ent temporal models have been proposed. Nowozin and Shotton
(2012) proposed the notion of “action points” to serve as nat-
ural temporal anchors of simple human actions using a hidden
Markov model. Wang et al. (2006) introduced a more elaborated
discriminative hidden-state approach for the recognition of human
gestures. However, relying on only one layer of hidden states, their
model alone might not be powerful enough to learn a higher level
representation of the data and take advantage of very large cor-
pora. In this chapter, we adopt a different approach by focusing
on deep feature learning within a temporal model.

There have been a few works exploring deep learning for action
recognition in videos. For instance, Ji et al. (2013) proposed to
use a 3D convolutional neural network for automated recognition
of human actions in surveillance videos. Their model extracts
features from both the spatial and the temporal dimensions by
performing 3D convolutions, thereby capturing the motion infor-
mation encoded in multiple adjacent frames. To further boost
the performance, they proposed regularizing the outputs with
high-level features and combining the predictions of a variety of dif-
ferent models. Taylor et al. (2010) also explored 3D Convolutional
Networks for learning spatio-temporal features for videos. The
experiments in (Wu and Shao, 2014a) show that multiple network
averaging works better than a single individual network and larger
nets will generally perform better than smaller nets. Provided
there is enough data, averaging multicolumn nets (Cireşan et al.,
2012) applied to action recognition could also further improve the
performance.

The introduction of Kinect-like sensors has put more emphasis
on RGB-D data for gesture recognition but has also influenced
other video-based recognition tasks. For example, the benefits
of deep learning using RGB-D data have been explored for ob-
ject detection or classification tasks. Dosovitskiy et al. (2014)
presented generic feature learning for training a convolutional
network using only unlabeled data. In contrast to supervised

3.2 Related work 45

network training, the resulting feature representation is not class
specific and is advantageous on geometric matching problems,
outperforming the SIFT descriptor. Socher et al. (2012) proposed
a single convolutional neural net layer for each modality as inputs
to multiple, fixed-tree RNNs in order to compose higher order
features for 3D object classification. The single convolutional
neural net layer provides useful translational invariance of low
level features such as edges and allows parts of an object to be
deformable to some extent. To address object detection, Gupta
et al. (2014) proposed a geocentric embedding for depth images
that encodes height above ground and angle with gravity for each
pixel in addition to the horizontal disparity. This augmented
representation allows CNN to learn stronger features than when
using disparity (or depth) alone.

Recently, the gesture recognition domain has been stimulated
by the collection and publication of large corpora. One such
corpus was made available for the ChaLearn 2013 (Guyon et al.,
2012) multi-modal gesture recognition competition hosted on
Kaggle. This corpus is recorded with a Microsoft Kinect and
included RGB images, depth images and audio (the users say the
gesture out loud). Many participants used HMMs to tackle this
challenge: Nandakumar et al. (2013) applied the MFCC+HMM
paradigm for audio input while their visual module still relied on
low level features such as Space-Time-Interest-Point (STIP) or
covariance descriptor to process RGB videos and skeleton mod-
els. The 1st ranked team, Wu et al. (2013), used and HMM
model as audio feature classifier and Dynamic Time Warping
as the classifier for skeleton features. A recurrent neural net-
work was utilized in (Neverova et al., 2013) to model large-scale
temporal dependencies, for data fusion and for the final gesture
classification. Interestingly, the system in (Neverova et al., 2013)
decomposed the gestures into a large-scale body motion and local
subtle movements.

As a follow up, the ChaLearn LAP (Escalera et al., 2014)

46 3 Gesture recognition using HMMs and 3D CNNs

gesture spotting challenge has collected around 14 000 gestures
drawn from a vocabulary of 20 Italian gestures. The emphasis in
this dataset is on user-independent online classification of gestures.
Several of the top winning methods in the ChaLearn LAP ges-
ture spotting challenge require a set of complicated handcrafted
features for either skeletal input, RGB-D input, or both. For
instance, Neverova et al. (2014) proposed a pose descriptor con-
sisting of seven subsets for skeleton features. Monnier et al. (2014)
proposed to use four types of features for the skeleton (normal-
ized joint positions; joint quaternion angles; Euclidean distances
between specific joints; and directed distances between pairs of
joints). This was based on the features proposed by Yao et al.
(2011)). Additionally, they also used a histograms of oriented
gradients (HOG) descriptor for RGB-D images around the hand
regions. In (Peng et al., 2014), handcrafted features based on
dense trajectories (Wang et al., 2013) are adopted for the RGB
module.

There is however also the trend to learn the features, in con-
trast to engineering them, for gesture recognition in videos. For
instance, the recent methods in (Wu and Shao, 2014a; Pigou et al.,
2014) focused on single modalities, used deep networks to learn
representations from skeleton data (Wu and Shao, 2014a) or from
RGB-D data (Pigou et al., 2014). Neverova et al. (2014) presents
a multiscale and multimodal deep network for gesture detection
and localization. Key to their technique is a training strategy
that exploits i) careful initialization of the sub-components of
individual modalities and ii) gradual fusion of modalities from
the strongest to weakest cross-modality structure. One major
difference compared to what we propose is the treatment of time:
rather than using a temporal model, they used frames within a
fixed interval as the input of their neural networks. This approach
requires the training of several multiscale temporal networks to
cope with gestures performed at different speeds. Furthermore,
the skeleton features they used are handcrafted, whereas our

3.3 ChaLearn LAP Montalbano gesture recognition dataset 47

features are learned from data.

ChaLearn LAP Montalbano ges-
ture recognition dataset

The ChaLearn Looking At People (LAP) 2014 challenge1 (Escalera
et al., 2014) consists of three tracks: human pose recovery, hu-
man action/interaction recognition and gesture recognition. The
dataset accompanying the gesture recognition challenge, called
the Montalbano dataset, will be used throughout this work. A few
examples of the dataset are illustrated in Figure 3.2. The dataset
is multi-modal, because the gestures are captured with a Microsoft
Kinect that has a depth sensor. Each video data file provides three
modalities: the sequence of skeleton joints (skeleton pose stream)
provided by the Microsoft Kinect API, the RGB and the depth
images (RGB-D) including a segmentation of the person perform-
ing the gesture. In all sequences, a single user is recorded in front
of the camera, performing natural communicative Italian gestures.
The focus is on “multiple instance, user independent spotting” of
gestures, which means learning to recognize gestures from several
instances for each category performed by different users. The
gesture vocabulary contains 20 Italian cultural/anthropological
signs. The gestures are not segmented, which means that se-
quences typically contain several gestures. Gesture performances
appear randomly within the sequence without a prearranged rest
pose. Moreover, several unannotated out-of-vocabulary gestures
are present.

It is the largest publicly available gesture dataset of its kind.
There are 1 720 800 labeled frames across 940 video fragments
of about 1 to 2 minutes sampled at 20Hz with a resolution of

1http://gesture.chalearn.org/2014-looking-at-people-challenge/data-
2014-challenge

http://gesture.chalearn.org/2014-looking-at-people-challenge/data-2014-challenge
http://gesture.chalearn.org/2014-looking-at-people-challenge/data-2014-challenge

48 3 Gesture recognition using HMMs and 3D CNNs

(a) Perfetto (b) Perfetto (c) Buonissimo

(d) OK (e) Non ce ne piu (f) Combinato

(g) Basta (h) Cheduepalle (i) Daccordo

Figure 3.2: Examples of gestures in the ChaLearn dataset.
This dataset is challenging because of the “user indepen-
dent” setting (a) & (b), some gestures differ primarily in
hand pose, but not in the arm movement (d) & (e). Some
gestures require both hands to perform (g,h,i). Subtle
hand movement (c) and differences in execution speed
and range (f) also make this recognition task difficult.

640×480. The 13 858 gestures in total are performed by 27 dif-
ferent individuals under diverse conditions; these include varying
clothes, positions, backgrounds and lighting. The training set
contains 11 116 gestures and the test set contains 2 742 gestures.

3.4 Model formulation & overall approach 49

The class imbalance is negligible. The starting and ending frames
for each gesture are annotated as well as the gesture class label.

The 20 gesture classes are the following: vattene, vieniqui, per-
fetto, furbo, cheduepalle, chevuoi, daccordo, seipazzo, combinato,
freganiente, ok, cosatifarei, basta, prendere, noncenepiu, fame,
tantotempo, buonissimo, messidaccordo, sonostufo. The average
length of the gestures is 39 frames, with a minimum of 16 and a
maximum of 104.

Model formulation & overall ap-
proach

Inspired by the framework successfully applied to speech recogni-
tion in (Mohamed et al., 2012), the proposed model is a learning
system. This results in an integrated model, where the amount
of prior knowledge and engineering is minimized. On top of that,
this approach works without the need for additional complicated
preprocessing and dimensionality reduction methods since these
are naturally embedded in the framework.

The proposed approach relies on a hidden Markov model
(HMM) for the temporal aspect and neural networks to model
the emission probabilities. In the remainder of this section, we
will first present our temporal model and then introduce its main
components. The details of the two distinct neural networks and
fusion mechanisms along with postprocessing will be provided in
Section 3.5.

Bayesian networks
As HMMs fall under the category of Bayesian networks, we discuss
the general concept in this subsection. A Bayesian network is a
probabilistic graphical model. A graphical model is a statistical

50 3 Gesture recognition using HMMs and 3D CNNs

Grass wet

Rain Sprinkler

Figure 3.3: An example of a Bayesian network.

model consisting of stochastic random variables (X1, X2, . . . , Xn).
The variables and the conditional dependencies between these
variables are represented by vertices and edges (respectively) in a
graph. In the case of a Bayesian network, this graph is a directed
acyclic graph. This means that each edge is directed from one
vertex to another without creating loops (or cycles). The directed
and acyclic nature of the graph allows the factorization of the
joint probability of the random variables:

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi|πi), (3.1)

where πi represents the set of random variables (vertices) that
Xi is conditionally dependent on: these are the parent vertices
of vertex i in the graph. This makes it very straightforward to
define the joint probability when the graph is given.

We give a simple example to clarify the above: the grass in
your garden is wet when it’s raining or when the sprinkler is
activated, while the sprinkler is only turned on when it’s not
raining. We have three variables: G (grass wet), S (sprinkler on)
and R (rain). We can design the Bayesian network as a graph in
Figure 3.3 by taking into account the dependencies between the
different variables. Based on this graph and Equation 3.1 we can
determine the joint probability function:

P (G,S,R) = P (G|S,R)P (S|R)P (R). (3.2)

To completely define the Bayesian network, we need to specify
each factor of the joint probability. The example above is trivial,

3.4 Model formulation & overall approach 51

but more complex problems require the learning of the distribution
parameters of each factor. A common method is to use a Gaussian
distribution for each conditional probability and the mean and
the variance are parameters that are learned during training.

Once the Bayesian network is completely defined, we can use
the model to find the posterior probability of a random event (this
process is called probabilistic inference). The posterior probability
of an event is the probability obtained after we have observed the
given evidence (Bishop et al., 2006). To go back to our example:
what is the probability that the sprinkler is activated, given the
grass is wet? Then the posterior probability is P (S|G), because
it is the conditional probability obtained after we have observed
the given G.

There are multiple different ways to perform inference and
parameter learning with Bayesian networks, but as this chapter
is focused on HMMs, we will discuss this in the next subsection.

Hidden Markov models
The HMM is an important machine learning model for time series
processing. They are especially popular in the field of speech
recognition and language processing. A Markov model, also called
a Markov chain, is a weighted finite automaton where the weights
are probabilities. In contrast to Bayesian networks (including
HMMs), Markov models are graphical models that are undirected
and may be cyclic. The model is defined by a number of observable
states and the probabilities to transition from one state to another.
In a hidden Markov model, the states are not observable, hence
the name. However, we are given observables that are induced by
latent states. For example, a person wearing an umbrella is an
observation that suggests a high probability of an unobservable
rainy weather state in a weather model.

A HMM models the probability distributions over sequences of
observations (X1, X2, . . . , Xt, . . .), where t is the time-step index.

52 3 Gesture recognition using HMMs and 3D CNNs

Figure 3.4: Gesture recognition model: the tempo-
ral model is an HMM (left), whose emission probability
P (Xt|Ht) (right) is modeled by feedforward neural net-
works. Observations Xt (skeletal features Xs

t , or RGB-D
image featuresXr

t) are first passed through the appropriate
deep neural nets (a deep belief network -DBN- pretrained
with Gaussian-Bernouilli restricted Boltzmann machines
for the skeleton modality, and a 3D convolutional neural
network -3D CNN- for the RGB-D modality) to extract
high-level features (V s and V r) . These are subsequently
combined to produce an estimate of P (Xt|Ht).

The observation Xt at time-step t is generated by a hidden state
Ht. The current hidden state Ht is only dependent on the previous
hidden state Ht−1 (i.e. the Markov property). HMMs can be
depicted graphically as in Figure 3.4 (left). This shows that
HMMs also fall under the category of Bayesian networks.

The joint probability of observations and states is given by:

P (H1:T , X1:T) = P (H1)P (X1|H1)
T∏

t=2
P (Xt|Ht)P (Ht|Ht−1),

(3.3)
where T is the length of a sequence, P (H1) is the prior on the first

3.4 Model formulation & overall approach 53

hidden state, P (Ht|Ht−1) models the state transition probability,
and P (Xt|Ht) is the emission probability of the observation. The
emission probabilities P (Xt|Ht) can be modeled with many differ-
ent approaches. Traditionally, they are learned by using Gaussian
mixture models (GMMs). In this chapter, we model them in a
discriminative fashion using deep neural networks (see Section
3.4.5).

Once we have the emission probabilities, we can perform
inference to obtain the distribution P (Ht|X1:T). Because the
graph for the hidden Markov model is a directed tree, this problem
can be solved exactly and efficiently using the max-sum algorithm
also known as the Viterbi algorithm. This algorithm searches the
space of paths efficiently to find the most probable path with a
computational cost that grows only linearly with the length of the
chain (Bishop et al., 2006). The result of the Viterbi algorithm is
a path–sequence ĥt:T of nodes going through the state diagram
and from which we can easily infer the class of the gesture.

Deep dynamic neural networks
A HMM is adopted for modeling higher level temporal relation-
ships. At each time step t, we have one observed random variable
Xt composed of the skeleton input Xs

t and RGB-D input images
Xr

t as shown in the graphical representation in Figure 3.4. The
hidden state variable Ht takes on values in a finite set H com-
posed of NH states related to the different gestures. The intuition
motivating the HMM model is that a gesture is composed of a
sequence of poses where the relative duration of each pose may
vary. This variability is captured by allowing flexible forward
transitions within a Markov chain. In practice, Ht can be inter-
preted as being in a particular phase of a gesture a. The emission
probabilities of the observations P (Xt|Ht) are modeled by deep
neural networks in our case.

54 3 Gesture recognition using HMMs and 3D CNNs

State-transition model and inference
The HMM framework can be used for simultaneous gesture seg-
mentation and recognition. This is achieved by defining the state
transition diagram as shown in Figure 3.5. For each given gesture
a ∈ A, a set of states Ha is introduced to define a Markov model
of that gesture. For example, for action sequence “tennis serving”,
the action sequence can implicitly be dissected into ha1 , ha2 , ha3

as: 1) raising one arm 2) raising the racket 3) hitting the ball.
We further discuss the implementation of the gesture states in
Section 3.5.1.

Since our goal is to capture the variation in speed of the
performed gestures, we set the transition matrix P (Ht|Ht−1) in
the following way: when being in a particular state n at time t,
moving to time t+1, we can either stay in the same state (slower),
move to state n+ 1, or move to state n+ 2 (faster). Furthermore,
to allow the segmentation of gestures, we add an ergodic state
(ES) which represents the silence state for speech recognition and
serves as a catch-all state. From this state we can move to the first
three nodes of any gesture class, and from the last three nodes of
any gesture class we can move to ES. Hence, the hidden variable
Ht can take values within the finite set H = (⋃a∈AHa)⋃{ES}.

Overall, we refer to the model as the ergodic states hidden
Markov model (ES-HMM) for simultaneous gesture segmenta-
tion and recognition. It differs from the firing hidden Markov
model of (Nowozin and Shotton, 2012) in that we strictly follow
a left-right HMM structure without allowing backward transition,
forbidding inter-states transverse, assuming that the considered
gestures do not undergo cyclic repetitions as in walking for in-
stance.

Once we have the trained model, we can use the Viterbi
algorithm to infer online the filtering distribution P (Ht|X1:t),
or offline (or with delay) the smoothed distribution P (Ht|X1:T)
where T denotes the end of the sequence.

3.4 Model formulation & overall approach 55

Figure 3.5: State diagram of the ES-HMM model for
low-latency gesture segmentation and recognition. An
ergodic state (ES) is used to model the resting position
between gesture sequences. Each node represents a single
state and each row represents a single gesture model. The
arrows indicate possible transitions between states.

Learning the emission probability
Traditionally, emission probabilities for activity recognition are
learned by Gaussian mixture models (GMM). Alternatively, in this
work we propose to model this term in a discriminative fashion.
Since the input features have a high dimensionality, we propose
to learn them using two distinctive types of neural networks each
suited to one input modality, as summarized in Figure 3.4 (right
side). Unfortunately, estimating a probability density such as an
emission probability remains quite a difficult problem, especially
in high dimensions.

Strictly speaking, discriminative neural networks estimate
posterior probabilities P (Ht|Xt). Hence we should divide the
posteriors by the priors P (Ht) and multiply with P (Xt) to obtain

56 3 Gesture recognition using HMMs and 3D CNNs

the emission probabilities P (Xt|Ht) required by the HMM for
decoding. However, using scaled likelihoods may not be beneficial
if estimated priors do not match the priors in the test set (Morris
et al., 2001). Therefore, we employ the posteriors directly without
incorporating the priors. This is equivalent to assuming that all
priors are equal. This makes sense in our case since the classes in
the dataset are balanced and we uniformly subdivide each gesture
class into a number of states.

Using this approach, inference in the HMM depends only on
the ratio between emission probabilities for the different states.
One can interpret that the models are trained to directly predict
the ratio between emission probabilities. This is similar to the
approach used by Kindermans et al. (2012), integrating trans-
fer learning and an HMM-based language model into a single
probabilistic model. One should think of the predicted emission
probability ratio as an unnormalized version of the true emission
probability.

For the skeletal features, we rely on a deep belief network
(DBN, see Appendix A for more details) trained in two steps
(Salakhutdinov, 2009): in the first step, stacked restricted Boltz-
mann machines (RBM) are trained in an unsupervised fashion
using only observation data to learn high-level feature represen-
tations; in the second step, the model is used as a deep belief
network whose weights are further fine-tuned for learning the emis-
sion probability. For the RGB and depth (RGB-D) video data, we
rely on a 3D (2D for space and 1D for time) convolutional neural
network (3D CNN) to model the emission probabilities. Finally, a
fusion method combines the contributions of both modalities, this
fusion can be done in an intermediate (hidden) layer or at a later
stage at the output layer. In all cases (including the fusion), the
supervised training is conducted by learning to predict the state
label (an element of H) associated to each training or testing
frame.

Our deep learning based approach presents several advantages

3.4 Model formulation & overall approach 57

over the traditional GMM paradigm. While GMMs are easy to fit
when they have diagonal covariance matrices and, with enough
components, can model any distribution, they have been shown to
be statistically inefficient at modeling high-dimensional features
with a complicated structure as explained in (Mohamed et al.,
2012). For instance, assume that the components of the input
feature space can be factorized into two subspaces characterized
by N and M significantly different patterns in the training data,
respectively, and that the occurrences of these patterns are rel-
atively independent2. A GMM requires N ×M components to
model this structure because each component must generate all
the input features.

On the other hand, a stacked RBM that explains the data
only requires N +M components, each of which is specific to a
particular subspace. This inefficiency of GMMs at modeling a
structure that can be factorized leads to GMM+HMM systems
having a very large number of mixture components, where each
must be estimated from a very small fraction of the data.

The intuition for using a DBN for modeling the emission
probability P (Xt|Ht) from skeleton joints is that by learning the
multilayer network layer by layer, semantically meaningful high
level features for skeleton configurations will be extracted while
at the same time a parametric prior of human pose is learned.

In our case, using the joint data as raw input, the data-driven
approach network will be able to extract multi-joint features
relevant to the target classes. For instance, from the “toss” action
data, a “wrist joints rotating around shoulder joints” feature is
expected to be extracted from backpropagation learning. It is
also expected to be the equivalent of those task specific ad hoc
hard wired sets of joint configurations defined in (Chaudhry et al.,
2013; Müller and Röder, 2006; Nowozin and Shotton, 2012; Ofli
et al., 2013). An interesting future investigation would be to

2In our case, intuitively these spaces could be the features from different
body parts, like left/right arm or torso features.

58 3 Gesture recognition using HMMs and 3D CNNs

detect these meanings of the extracted features from the network
activations.

The benefit of such a learning approach is even more important
when a large amount of unlabeled data (e.g. skeleton data inferred
from depth images of people performing unknown gestures) is
available in addition to the labeled ones (this was not the case
here). Naturally, many of the features learned in this unsupervised
way might be irrelevant for making the required discriminations,
even though they are important for explaining the input data.
However, this is a price worth paying if data availability and
computation are cheap and lead to a stable mapping of the high-
dimensional input into high-level features that are very good for
discriminating between classes of interest.

In summary, the feedforward neural networks offer several
potential advantages over GMMs:

• Their estimation of emission probabilities does not require
detailed assumptions about the data distribution.

• They allow an easy combination of diverse features, includ-
ing both discrete and continuous features.

• They use far more of the data to constrain each parameter
because the output on each training case is sensitive to a
large fraction of the weights.

Model implementation

In this section, we detail the different components of the proposed
deep dynamic neural network approach.

3.5 Model implementation 59

Ergodic states HMM
In all our experiments, the different modeling elements are speci-
fied as follows.

The number of states NHa associated to an individual gesture
has been set to 5. In total, the number of states is NH = 20× 5 +
1 = 101 when conducting experiments on the ChaLearn dataset
containing 20 classes. Note that intuitively, five states represent a
good granularity as most gestures in the dataset are composed of
five phases: an onset, followed by arm motions to reach a more or
less static pose (often characterized by a distinct hand posture),
and the motion back to the resting position. In future work, the
optimization of the number of states3 and even a different number
of states per gesture could be investigated.

The training data of the ChaLearn competition is given as
a set of sequences Xi = [Xi,1, . . . ,Xi,t, . . . ,Xi,Ti

] where Xi,t =
[Xs

i,t,X
r
i,t]. Here, Xs

i,t corresponds to the skeleton and Xr
i,t de-

notes the RGB-D input. The length of a sequence Ti is highly
variable (from 16 to 104 frames) and depends on the gesture class
and the speed of the gesture performance.

As only a single gesture label is provided for each sequence, we
need to define yi = [yi,1, . . . , yi,t, . . . , yi,Ti

], the sequence of state
labels yi,t associated to each frame. To do so, a forced alignment
scheme is used. This means that if the ith sequence is a gesture a,
then the first bTi

5 c frames are assigned to state h1
a (the first state

of gesture a), the following bTi

5 c frames are assigned to h2
a, and

so forth.
In the speech recognition community (Yu and Deng, 2012), a

common approach is to adopt the trained GMM-HMM to revise
the force-aligned labels and use them for the DNNs. Similarly we
could potentially adopt the same route. However, the contribution
to the quality of the label might be trivial considering the increase
of the training time. Hence, we argue that the adopted force-

3Experiments with 10 states per gesture led to similar performance.

60 3 Gesture recognition using HMMs and 3D CNNs

alignment scheme will suffice.
Note that each gesture sequence comes with the video frames

preceding and following the gesture. In practice, we extracted
5 frames before and after each gesture sequence and labeled
them with the ergodic state (ES) label. The transitional ma-
trix P (Ht|Ht−1) was learned by simply collecting the transition
statistics from the label sequences yi.

Skeleton module

Skeleton input features

Given our task, only the N = 11 upper body joints are relevant
and considered. Following the Microsoft Kinect API naming
conventions, the joints are ElbowLeft, WristLeft, ShoulderLeft,
HandLeft, ElbowRight, WristRight, ShoulderRight, HandRight,
Head, Spine, HipCenter. Every joint consists of a the 3D location
and orientation for every frame. The raw skeleton data of timestep
t are defined as Xs

t = [xs,1
t , . . . , xs,N

t]. To capture the gesture
dynamics, rather than using Xs

t as raw input to our data driven
approach, we follow the approach of (Wu and Shao, 2014c) and
compute the 3D positional pairwise differences of the joints, as
well as the first and second temporal derivatives. The pairwise
differences are useful features, because they convey how the joints
are positioned relative to each other. The three skeleton features
are shown in Figure 3.6 and defined as followed4:

f
(1)
t = {xs,i

t − xs,j
t |i, j = 1, 2, . . . , N ; i 6= j}, (3.4)

f
(2)
t = {xs,i

t+1 − x
s,i
t |i = 1, 2, . . . , N}, (3.5)

f
(3)
t = {xs,i

t+1 − 2xs,i
t + xs,i

t−1|i = 1, 2, . . . , N}. (3.6)
4Note that the offset features used in (Wu and Shao, 2014c) depend on the

first frame. Thus if the initialization fails, which is a very common scenario,
the feature descriptor will be generally very noisy. Hence, we do not use
these offset features here.

3.5 Model implementation 61

Figure 3.6: Left: A point cloud projection of a depth
image and the 3D positional features. Right: A DBN is
trained to predict the emission probability p(Xs

t |Ht) from
the skeleton input ft. The double arrows indicate that the
intermediate weights are first trained in an unsupervised
fashion using stacked RBMs.

This results in an input feature vector ft = [f (1)
t ,f

(2)
t ,f

(2)
t] of

dimension Nf = 891.
Admittedly, here we do not completely neglect human prior

knowledge about information extraction for relevant static pos-
tures, velocity and acceleration of overall dynamics of motion
data. While we have indeed used prior knowledge to define our
relevant features, we believe they remain quite general and do
not need dataset specific tuning. Note that the feature extraction
process resembles the computation of the mel-frequency cepstral
coefficients (MFCCs) and their temporal derivatives typically used
in the speech recognition community (Mohamed et al., 2012).

Modeling the skeleton using deep belief networks

Given the input skeleton features f , a DBN model is used to
predict the emission probability, as shown in Figure 3.6. The

62 3 Gesture recognition using HMMs and 3D CNNs

learning proceeds in two steps which we briefly mentioned in
Section 3.4.5: in the first step, the network is considered to
be a stack of RBMs, and trained using a greedy, layer-by-layer
unsupervised learning algorithm (Hinton et al., 2006); in the
second step, a softmax network layer is added on top of the RBMs
to create a DBN architecture, where the weights of the first step
are used to initialize the corresponding weights in the DBN. The
DBN is subsequently fine-tuned in a supervised manner to predict
the emission probability. The number of nodes at each layer of
the DBN are [Nf , 2000, 2000, 1000, NH]. Below we give further
details on the model and the training process.

DBN forward training We ran 100 epochs using a fixed
recipe based on stochastic gradient descent with a mini-batch size
of 200 training cases to train the stacked RBM. The learning rate
is fixed to 0.001 for the Gaussian-Bernoulli RBMs, and to 0.01
for the higher-layer binary-binary RBMs. The DBN is initialized
with the result of the previous pretraining. The goal of this
initialization is to avoid suboptimal local minima and to increase
the network’s generalization capabilities. The learning rate for the
parameter fine tuning starts at 1 with 0.99999 mini-batch scaling.
During the experiments, early stopping occurs around epoch 440.
The optimization completes with a frame-based validation error
rate of 16.5%.

RGB & depth 3D module

Preprocessing

Working directly with raw Kinect recorded data frames, which
are 640× 480 pixel images, is computationally very demanding.
Therefore, our first step in the preprocessing stage consists of
cropping the image to the highest hand and the upper body,
based on the given joint information. In the ChaLearn dataset,

3.5 Model implementation 63

we determined that the highest hand is the most interesting. When
both hands are used, users tend to perform the same (mirrored)
movement. When only one hand is used, it is always the highest
one that is relevant for the gesture. Furthermore, to be invariant
to handedness, we train the model with the right hand view. For
this reason, the video is mirrored when the left hand is the actual
performing hand.

The preprocessing results in four video samples (body and hand
with grayscale and depth) of resolution 64× 64. Furthermore, the
noise in the depth maps is reduced by removing the background
using the automatically produced segmentation mask provided
with the data, and applying a median filtering. Depth images are
normalized to zero mean and unit variance, whereas RGB images
are only normalized to unit variance. The outcome is illustrated
in Figure 3.7.

3D CNN architecture

The architecture consists of a series of layers composed of either
convolution, pooling or fully connected layers. The 3D convolution
itself is achieved by convolving a 3D kernel to the volume formed
by stacking multiple contiguous frames together. We follow the
nomenclature of (Ji et al., 2013). However, instead of using tanh
units (Ji et al., 2013), rectified linear units (ReLUs) (Krizhevsky
et al., 2012b) are used to speed up training. Formally, the value
of a unit at position (x, y, z) (z here corresponds to the time-axis)
in the j-th feature map in the i-th layer, denoted as Uxyz

ij , is given
by:

Uxyz
ij = max

0, bij +
∑
m

Pi∑
p=1

Qi∑
q=1

Ri∑
r=1

W pqr
ijmU

(x+p)(y+q)(t+r)
(i−1)m

 (3.7)

The complete 3D CNN architecture is depicted in Figure 3.8: four
types of input contextual frames are stacked as size 64× 64× 4
(as illustrated in Figure 3.9). The first layer (H1) consists of 32

64 3 Gesture recognition using HMMs and 3D CNNs

Figure 3.7: Preprocessing result. Inputs from top to
bottom: 1) grayscale body input, 2) grayscale hand input,
3) depth body input, 4) depth hand input.

feature maps produced by 5 × 5 spatial convolutional kernels,
followed by local contrast normalization (LCN) (Jarrett et al.,
2009). Note that the filter response maps of the depth and RGB
images of the hand (and body) are summed to produce a single
feature map, thus resulting in 32 feature maps for the hand and
the body region separately. A 3D max pooling with strides (2, 2, 2)
is then applied. The second layer uses 64 feature maps with 5× 5
kernels followed by LCN and 3D max pooling with strides (2, 2, 2).
The third layer is composed of 64 feature maps with 4× 4 kernels
followed by 3D max pooling with strides (1, 2, 2). All hand and
body convolutional layer outputs of H6 are flattened in H7, and
fed into one fully connected layer of size 1024. Finally, the output
layer has NH values, the number of states in the HMM state
diagram (see Figure 3.5).

Fi
gu

re
3.

8:
3D

CN
N

ar
ch
ite

ct
ur
e.

Th
e
in
pu

ti
s

2
×

2@
64
∗

64
∗

4,
m
ea
ni
ng

2
m
od

al
iti
es

(d
ep
th

an
d
RG

B)
fo
rt

he
ha
nd

an
d
bo

dy
re
gi
on

s,
ea
ch

be
in
g
4
co
ns
ec
ut
iv
e
64

by
64

fra
m
es

st
ac
ke
d
to
ge
th
er
.

66 3 Gesture recognition using HMMs and 3D CNNs

Training details

During training, dropout (Hinton et al., 2012) is used as the
main regularization approach to reduce overfitting. Nesterov’s
accelerated gradient descent (NAG) (Sutskever et al., 2013) with
a fixed momentum-coefficient of 0.9 and mini-batches of size 64
are also used. The learning rate is initialized at 0.003 with a
5% decrease after each epoch. The weights of the 3D CNNs are
randomly initialized from a normal distribution with µ = 0 and
σ = 0.04. The frame-based validation error rate is 39.06% after
40 epochs. Compared with the skeleton module (16.5% validation
error rate), the 3D CNN has a notable higher frame-based error
rate.

Looking into the networks: visualization of the fil-
ter banks

The convolutional filter weights of the first layer are depicted
in Figure 3.9. The unique characteristics from the kernels are
clearly visible: as hand input images (RGB and depth) have
larger homogeneous areas than the body inputs, the resulting
filters are smoother than their body-processing counterparts. In
addition to being smoother overall than the grayscale filters,
depth filters also exhibit stronger edges. A similar finding was
reported in (Socher et al., 2012). Finally, when looking at the
joint depth-image response maps, we notice that some filters
better capture segmentation-like information, while others are
more edge-oriented.

Multimodal fusion
To combine the two modalities, two strategies can be used, as
shown in Figure 3.10: a late fusion approach and an intermediate
fusion approach.

Fi
gu

re
3.

9:
Vi
su
al
iza

tio
n
of

in
pu

tf
ra
m
es
,fi

rs
tc

on
vo
lu
tio

na
ll
ay
er

5×
5
fil
te
rs
,a

nd
co
rre

sp
on

di
ng

re
sp
on

se
m
ap
s.

As
de
pt
h
im

ag
es

ar
e
sm

oo
th
er

th
an

th
e
gr
ay
sc
al
e
on

es
,t
he

co
rr
es
po

nd
in
g
fil
te
rs

ar
e
sm

oo
th
er

as
we

ll.

68 3 Gesture recognition using HMMs and 3D CNNs

Figure 3.10: Multimodal dynamic networks with late fu-
sion scheme (left) and intermediate fusion scheme (right).
The late approach simply combines the emission proba-
bilities from two modalities. In the intermediate fusion
scheme, each modality (skeleton and RGB-D) is first pre-
trained separately, and their high-level representation V s

and V r (the penultimate node layers of their neural net-
works) are concatenated to generate a shared representa-
tion. The two sub-modules in the resulting architecture
are trained jointly.

Late fusion

This scheme combines the emission probabilities estimated from
the different input as a simple linear combination:

P (Xt|Ht) ∝ αP (Xs
t |Ht) + (1− α)P (Xr

t |Ht) (3.8)

Here, the different emission probabilities are provided by the
modules described in 3.5.2 and 3.5.3. The coefficient α controls
the contributions of each source and its value is optimized through
cross validation. Interestingly, the best performing α is very close
to 0.5, indicating that both modalities are equally important.

3.6 Experiments and analysis 69

Intermediate fusion

As an alternative to the late fusion scheme, we can take advantage
of the high-level representation learned by each module (and
represented by the V s and V r nodes of the penultimate layer of
the respective networks, i.e. the layer before the softmax output).
To do this, we fuse the modalities in an intermediate fashion by
concatenating these two layers in one layer of 2024 hidden units.
Then we learn a cross-modality emission probability directly from
the resulting network. Note that this is very similar in spirit to
the approach proposed in (Ngiam et al., 2011) for audio-visual
speech recognition. An important difference is that in (Ngiam
et al., 2011), the same stacked RBMs/DBN architecture was used
to represent both modalities before the fusion, whereas in our
case, a stacked RBMs/DBN and a 3D CNN are used. A 3D CNN
is able to better cope with the high dimensionality of video data.

The resulting architecture is trained as follows. We start by
first initializing the weights of the deeper layers from the previously
trained sub-modules. Afterwards, we jointly fine-tune the whole
network (including the last layer parameters). The training ends
when the validation error rate stops decreasing (∼15 epochs). We
argue that using the “pretrained” parameters is important due to
the heterogeneity of the inputs of the system. Furthermore, the
joint training is included to adjust the parameters to be able to
handle the heterogeneity and to produce a more reliable estimate
from the multimodal data.

Experiments and analysis

This section reports the experiments performed to validate our
model. First, we will present the experimental protocol we fol-
lowed. In Section 3.6.2, we will present and analyze the obtained
results, including a discussion on the modeling elements. Finally,

70 3 Gesture recognition using HMMs and 3D CNNs

Section 3.6.3 will briefly discuss the computational complexity of
the approach.

Experimental protocol

Training and evaluation protocol

We follow the ChaLearn experimental protocol, in which the input
sequences are split into 700 videos for training, and 240 sequences
for testing. Note that the test sequences are not segmented a
priori and the gestures must be detected within a continuous
data stream which, in addition to the targeted gestures, also
contains noisy and out-of-vocabulary gestures. Furthermore, in
the experiments, we split the training videos into 650 videos for
training the neural network parameters, and 50 videos are used
as validation for monitoring the training performance and the
optimization of the hyper-parameters.

Performance measures

Several measures can be used to evaluate the gesture recognition
performance. In this work, we adopted the ChaLearn performance
measure known as the Jaccard index, which relies on a frame-
by-frame prediction accuracy. More precisely, if GTi denotes the
sequence of ground truth labels in video i, and Ri the algorithm
output, the Jaccard index of the video is defined as:

JIi(GTi, Ri, g) = Ns(GTi, Ri, g)
Nu(GTi, Ri, g) , (3.9)

and JIi = 1
|Gi|

∑
g∈Gi

JIi(GTi, Ri, g) (3.10)

where Ns(GTi, Ri, g) denotes the number of frames where the
ground truth and the prediction agree on the gesture class g. The
quantity Nu(GTi, Ri, g) reflects the number of frames labeled as

3.6 Experiments and analysis 71

a gesture g by either the ground truth or the prediction, and Gi

denotes the set of gestures either in the ground truth or detected
by the algorithm in sequence i5. The average of the JIi over all
test videos is reported as the final performance measure. Note
that experimentally, this measure tends to penalize false positives
less than missing true positives.

Being defined at the frame level, the Jaccard index can vary
due to variations of the segmentation (both in the ground truth
and recognition) at gesture boundaries, which can be irrelevant
from an application viewpoint. For this reason, we also used the
performance at the gesture event level by following the commonly
used PASCAL challenge intersection over union criterion. If for
a gesture segment G, we have G∩R

G∪R
> 0.5, where R denotes a

recognized gesture segment of the same class, then the gesture is
said to be recognized. However, if this also holds for a gesture
segment of another class, the prediction is said to be incorrect.
Otherwise the gesture is rated as undetected. This allows us to
define the Recognized, Confused and Missed performance mea-
sures at the video level. These quantities are then averaged over
the test sequences for reporting.

Tested systems

We evaluated the recognition performance made by the HMM
applied to the emission probabilities estimated from either the
skeleton data, the RGB-D image data, the late fusion scheme, and
the intermediate fusion scheme. Note that in all cases the HMM
output was further filtered to avoid false alarms, by considering
gesture segments of less than 20 frames as noise and discarding
them.

5Note that “non gesture” frames are excluded from the counts.

72 3 Gesture recognition using HMMs and 3D CNNs

Module Validation Test
Skeleton – DBDN 0.783 0.779
RGB-D – 3D CNN 0.752 0.717
Multimodal Late Fusion 0.817 0.809
Multimodal Inter. Fusion 0.800 0.798
Table 3.1: Results in terms of Jaccard index (JI) for the
different network structures and modalities modeling the
emission probabilities.

% Validation Test

Skeleton - DBDN Recognized 86.3 83.6
Confused 11.4 12.3
Missed 2.3 4.1

RGB-D - 3D CNN Recognized 78.7 75.8
Confused 5.2 4.5
Missed 16.1 19.7

Multimodal Late Fusion Recognized 87.9 86.4
Confused 9.1 8.7
Missed 3.0 4.9

Multimodal Inter. Fusion Recognized 86.5 85.5
Confused 7.3 6.8
Missed 6.2 7.7

Table 3.2: Gesture classification performance at the
event level, as a percentage of the number of gestures.

Results

Overall results The performance measurements of the algo-
rithms are given in Tables 3.1 and 3.2. As can be observed from
both performance measures, the skeleton module usually performs
better than the RGB-D module. In addition, its generalization ca-
pability is better than that of the RGB-D module, especially when
measured with the Jaccard index where there is almost no drop

3.6 Experiments and analysis 73

of performance between the validation and the test data. One
possible explanation is that the information in the skeleton data
is more robust, as it benefited from training using huge and highly
varied data (Shotton et al., 2011): around one million images
from both realistic and synthetic depth images were used to train
the decision forest classifiers involved in the joints extraction. On
the other hand, as the RGB-D module relies on the raw data and
was learned only from the ChaLearn training set, it may suffer
from some overfitting. Another interesting conclusion that can be
drawn from Table 3.2 is that while most errors from the RGB-D
module are due to under detection (the Missed rate is 19.7%,
whereas it is only 4.1% for the skeleton), the skeleton module is
more reactive to gesture activity, but makes more mistakes (the
Confused rate is 12.3% vs 4.5% for RGB-D).

Finally, the results also demonstrate that the combination
of both modalities is more robust, as shown by the increase in
the recognition rate and the reduced drop in the generalization
capability (for instance the decrease of the Recognized rate is
lower than for the skeleton data alone).

Confusion matrices The confusion matrices (in log-form) in
Fig. 3.11 better illustrate the complementarity of the behaviours of
the two modalities. The higher under-detection rate of RGB-D is
immediately apparent (except for last “undetected” column). We
can also notice that some gestures are more easily recognized than
others. This is the case for the “Basta” gesture, the arm motion
resembles the start and end of the arm motion of many other
gestures (see Figure 3.2). Regardless of the modality, the model
tends to recognize only a few instances of the other gesture classes,
whenever their likelihoods are low when being evaluated using the
HMM states associated with their true label. This is probably due
to too much variability in the execution of the gesture. Similarly,
the hand movement and pose of the “Buenissimo” gesture is
present in several other gesture classes. As a result, their instances

va
tte

ne
vi

en
iq

ui
pe

rfe
tto

fu
rb

o
ch

ed
ue

pa
lle

ch
ev

uo
i

da
cc

or
do

se
ip

az
zo

co
m

bi
na

to
fre

ga
ni

en
te

ok co
sa

tif
ar

ei
ba

st
a

pr
en

de
re

no
nc

en
ep

iu
fa

m
e

ta
nt

ot
em

po
bu

on
is

si
m

o
m

es
si

da
cc

or
do

so
no

st
uf

o
un

de
te

ct
ed

Predicted

vattene
vieniqui
perfetto

furbo
cheduepalle

chevuoi
daccordo
seipazzo

combinato
freganiente

ok
cosatifarei

basta
prendere

noncenepiu
fame

tantotempo
buonissimo

messidaccordo
sonostufo

Tr
ue

10-3

10-2

10-1

100

(a) Skeleton -
DBN

va
tte

ne
vi

en
iq

ui
pe

rfe
tto

fu
rb

o
ch

ed
ue

pa
lle

ch
ev

uo
i

da
cc

or
do

se
ip

az
zo

co
m

bi
na

to
fre

ga
ni

en
te

ok co
sa

tif
ar

ei
ba

st
a

pr
en

de
re

no
nc

en
ep

iu
fa

m
e

ta
nt

ot
em

po
bu

on
is

si
m

o
m

es
si

da
cc

or
do

so
no

st
uf

o
un

de
te

ct
ed

Predicted

vattene
vieniqui
perfetto

furbo
cheduepalle

chevuoi
daccordo
seipazzo

combinato
freganiente

ok
cosatifarei

basta
prendere

noncenepiu
fame

tantotempo
buonissimo

messidaccordo
sonostufo

Tr
ue

10-3

10-2

10-1

100

(b) RGB-D - 3D
CNN

va
tte

ne
vi

en
iq

ui
pe

rfe
tto

fu
rb

o
ch

ed
ue

pa
lle

ch
ev

uo
i

da
cc

or
do

se
ip

az
zo

co
m

bi
na

to
fre

ga
ni

en
te

ok co
sa

tif
ar

ei
ba

st
a

pr
en

de
re

no
nc

en
ep

iu
fa

m
e

ta
nt

ot
em

po
bu

on
is

si
m

o
m

es
si

da
cc

or
do

so
no

st
uf

o
un

de
te

ct
ed

Predicted

vattene
vieniqui
perfetto

furbo
cheduepalle

chevuoi
daccordo
seipazzo

combinato
freganiente

ok
cosatifarei

basta
prendere

noncenepiu
fame

tantotempo
buonissimo

messidaccordo
sonostufo

Tr
ue

10-3

10-2

10-1

100

(c) Multimodal
Late Fusion

Figure 3.11: Confusion matrices for the different modali-
ties.

3.6 Experiments and analysis 75

are often confused with “Buenissimo” when relying solely on the
skeleton information. However, as these gestures differ primarily
in their hand pose, this confusion is reduced by using the RGB-D
domain, or by fusing the skeleton and RGB-D modules.

The complementary properties of the two modalities are also
illustrated by the Viterbi path decoding plot in Figure 3.12. In
general, the benefit of the complementarity between arm pose
and hand pose can be observed from the whiter confusion ma-
trix than in the skeleton case (less confusion due to hand pose
information from RGB-D) and much less under-detection than
for the pure RGB-D model (thanks to an improved upper-body
pose discrimination thanks to skeleton input).

However, the single modalities have more difficulties in cor-
recting the recognition errors which are due to variations coming
from the performer, like differentiating gestures from people that
gesticulate more (see Figure 3.13).

Late vs. Intermediate fusion The results in Table 3.1
and 3.2 show that the intermediate fusion system improved in-
dividual modalities, but without outperforming the late fusion
strategy. The result is counterintuitive, as we would have expected
the cross-modality learning in the intermediate fusion scheme to
result in better emission probability predictions, compared to the
simple score fusion in the late system. One possible explanation is
that the independence assumption of the late scheme better pre-
serves both the complementarity and redundancy of the different
modalities, properties which are important for fusion. Another
possible explanation is that in the intermediate fusion learning
process, one modality may dominate and skew the network to-
wards learning that specific module and lowering the importance
of the other one.

The difference between the mean activations of the skeleton
module neurons is predominantly larger than that of the RGB-D
CNNs (0.57 vs. 0.056). This can be an indication of such a

Figure
3.12:

Viterbidecoding
ofsam

ple
sequence

#
700,using

skeleton
(top),RGB-D

(m
iddle)

and
late

fusion
system

(bottom
).

The
x-axisrepresentstim

e
and

the
y-axisrepresentsthe

hidden
statesofallclasses

and
ofthe

ergodic
state

(state
101)

constituting
the

finite
set
H
.
T
he

cyan
lines

represent
the

Viterbi
shortest

path,w
hile

red
lines

denote
the

ground
truth

labels,and
the

yellow
segm

ents
are

the
predicted

labels.
The

fusion
m
ethod

exploits
the

com
plem

entary
properties

ofindividualm
odules,e.g.

around
fram

e
200

the
skeleton

help
solving

the
m
issed

detection
from

the
3D

CN
N

m
odule,w

hile
around

fram
e
1450,

the
3D

CN
N

m
odule

can
help

suppress
the

false
positive

prediction
m
ade

by
the

skeleton
m
odule.

3.6 Experiments and analysis 77

(a) Sample #806

(b) Sample #702

Figure 3.13: Examples of performer variations in the
upper body dynamic. Most performers tend to keep their
upper-body static while performing the gesture, leading
to good recognition performance (Jaccard index of person
on the top is 0.95 for the late fusion system). Some
persons are more involved and move more vehemently
(person at the bottom, Jaccard index of 0.61), which
can affect the recognition algorithm itself (bottom left
samples) or even the skeleton tracking (bottom right; note
that normally cropped images are centered vertically on
the head position).

bias during the multimodal fine-tuning phase and would support
this conjecture, even if these mean activations are not directly
comparable due to the neuron heterogeneity (the skeleton DBN
has logistic units whereas the 3D CNN has rectified linear units
(ReLUs)). Note that such heterogeneity was not present when
fusing modalities in (Ngiam et al., 2011), where better registration
and less spatial registration variability in lip images allowed the
authors to resort to the stacked RBMs for both the visual and
auditory modality. Based on these observations we argue that

78 3 Gesture recognition using HMMs and 3D CNNs

more investigation on how to handle heterogeneous networks and
the fusion of multimodal data should be conducted.

HMM benefit As the emission probabilities are learned in a
discriminative manner, one could wonder whether the HMM brings
any benefit beyond smoothing. To investigate this, we removed
the HMM model and performed the smoothing as follows: for a
given gesture a, we computed its score at time t, Score(a, t), by
summing the emission probabilities p(Xt|Ht = h) for all nodes
associated to that gesture, i.e. h ∈ Ha. This score is then
smoothed in the temporal domain (using a window of 5 frames)
to obtain Ŝcore(a, t). Finally, following (Neverova et al., 2016),
the gesture recognition is performed in two steps: first finding
gesture segments by thresholding the score of the ergodic state;
then, for each resulting gesture segment, the recognized gesture
is defined as the one whose average score within the segment is
maximal. Figure 3.14 visualizes the predictions for the different
temporal smoothing strategies.

In general, we could observe that better decisions on the
presence of gestures and improved localization of the gesture
boundaries are obtained with the proposed DDNN. This is due to
the use of the temporal model defined in Figure 3.5. On the other
hand, the gesture detection based on a simple threshold is rather
unstable and much more sequence dependent. As a result, the
overall performance of the simplified decoding scheme without the
HMM temporal reduces the performance to JI = 0.66, while the
Recognized, Confused and Missed for the test set are 76.6 , 5.3
and 18.1 respectively (Table 3.2). However, note that this simple
method of relying on just the gesture probabilities produced by the
neural networks on 5 frame inputs still outperforms the Jaccard
index of 0.413 obtained by Camgöz et al. (2014) using a template
matching system with handcrafted features.

Fi
gu

re
3.

14
:
H
M
M

te
m
po

ra
lc

on
tr
ib
ut
io
n.

Fi
rs
t
ro
w
:
ou

tp
ut

em
iss

io
n
pr
ob

ab
ili
tie

s
fo
re

ac
h
ge
st
ur
e
as

gi
ve
n
by

th
e
la
te

fu
sio

n
sc
he
m
e
fo
rt

he
te
st

se
qu

en
ce

#
70

3.
Th

e
da
sh
ed

lin
e
re
pr
es
en
ts

th
e
pr
ob

ab
ili
ty

of
th
e
Re

st
in
g/

O
th
er

ge
st
ur
e
st
at
e,

wh
ile

ot
he
rc

ol
or
s
re
pr
es
en
t
di
ffe

re
nt

ge
st
ur
es
.
Se

co
nd

ro
w:

re
co
gn

ize
d

ge
st
ur
es
,w

ith
ou

t
H
M
M

m
od

eli
ng

.
Th

ird
ro
w:

H
M
M

ou
tp
ut
.
Fo

ur
th

ro
w:

gr
ou

nd
tr
ut
h
se
gm

en
ta
tio

n.

80 3 Gesture recognition using HMMs and 3D CNNs

Comparison with the state-of-the-art The performance
of other state-of-the-art techniques is given in Table 3.3. The first
half of the table uses handcrafted feature representations that are
subsequently classified. Our proposed system performs on par
with the top two methods. However, handcrafted feature methods’
performance are unlikely to improve much as more training data
becomes available. The representation learning methods in the
second half of the table perform comparably with the best hand-
crafted feature approaches and the top representation method
achieves the best Jaccard index score. Given more training data,
it is expected that these networks will be able to become even
better suited to the “user independent” setting. It is also worth
noting that our proposed system is the only method that incorpo-
rates more structured temporal modeling. The other approaches
resort to a more basic sliding window approach. We believe our
approach is an interesting research direction because an HMM-like
approach can be adapted to various lengths of gestures and exploit
temporal structure better.

Computational complexity
We can distinguish between two complexities: the training com-
plexity, and the test complexity.

Complexity at training time Although training deep neural
networks using stochastic gradient descent is computationally
intensive, the reuse of pretrained network parameters, as done
in our case, can help to speed up the learning process because
the improved initialization leads to faster convergence. We can
observe differences in training time as a function of the modality
(and architecture). Specifically, using a modern GPU (GeForce
GTX TITAN Black) and the convolution operation implemented
with Theano (Bastien et al., 2012), the training time per epoch
of the DBN skeleton module is less than 300 seconds. This allows

M
od

ul
e

Sk
el
et
on

RG
B-

D
Fu

sio
n

(M
on

ni
er

et
al
.,
20
14
)

3
se
t
sk
el
et
al

&
H
O
G
,B

oo
st
ed

cl
as
sifi

er
0.
79
1

-
0.
82
2

(C
ha

ng
,2

01
4)

3D
sk
el
et
al

po
se

&
H
O
G
,M

R
F

0.
79
0

-
0.
82
7

(P
en
g
et

al
.,
20
14
)

D
en
se

tr
aj
ec
to
ry

(H
O
G
,H

O
F,

M
BH

)
-

0.
79
2

-
(C

am
gö
z
et

al
.,
20
14
)

Te
m
pl
at
e-
ba

se
d
ra
nd

om
fo
re
st

cl
as
sifi

er
-

-
0.
74
7

(E
va
ng

el
id
is

et
al
.,
20
14
)

Fi
sh
er

ve
ct
or
,d

yn
am

ic
pr
og
ra
m
m
in
g

0.
74
5

-
-

(C
he
n
et

al
.,
20
14
)

In
de
pe

nd
en
t
su
bs
pa

ce
an

al
ys
is,

R
F

-
0.
64
9

-
(L

ia
ng

an
d
Zh

en
g,

20
14
)

PH
O
G
,S

V
M
,H

M
M

0.
45
4

0.
46
2

0.
59
7

(N
ev
er
ov
a
et

al
.,
20
14
)

R
ep
re
se
nt
at
io
n
le
ar
ni
ng

(m
ul
tis

ca
le
)

0.
80
8

0.
80
9

0.
84

9
(P

ig
ou

et
al
.,
20
14
)

C
N
N

-
0.
78
9

-
(W

u
an

d
Sh

ao
,2

01
4a
)

D
ee
p
ne
ur
al

ne
tw

or
ks

0.
74
7

0.
63
7

0.
80
4

D
D

N
N

(t
hi
s
wo

rk
)

0.
77
9

0.
71
7

0.
80
9

Ta
bl

e
3.

3:
Co

m
pa
ris
on

of
re
su
lts

in
te
rm

s
of

th
e
Ch

aL
ea
rn

Ja
cc
ar
d
in
de
x
w
ith

st
at
e-
of
-t
he
-a
rt

re
la
te
d

wo
rk
s.

82 3 Gesture recognition using HMMs and 3D CNNs

us to complete the 500 training epochs in just two days. The
training time of each epoch of the 3D CNN RGB-D module is
much longer. Each epoch requires more than 10 000 seconds,
which results in a total training time of about five days for 40
epochs. As the multimodal network is being initialized with the
individual subnetwork parameters, its training time is only half
that of the stand-alone 3D CNN.

Complexity at test time Given the trained models, our
framework can perform real-time video sequence labeling on the
GPU, thanks to the low cost of inference. More specifically, a
single feedforward neural network incurs linear computational
time (O(T)). Furthermore, it can be implemented very efficiently
on the GPU, because it requires mainly matrix products and
convolutional operations. The computational complexity of the
Viterbi algorithm is O(T ∗ |S|2), where T is the number of frames
and |S| the number of states, and can be executed in real-time
given our state-space. In practice, our multimodal neural network
can be deployed at 90 FPS. Remarkably, the preprocessing steps
take most of the time and an unoptimized version runs already
at 25 FPS, while the Viterbi decoding runs at 90 FPS. Hence,
with further optimizations the complete system can achieve faster
than real-time performance.

Conclusion and future work

In this chapter, we presented a novel deep dynamic neural network
(DDNN) for continuous gesture recognition on multimodal data
comprising RGB-D data and skeleton features. In contrast to
previous state-of-the-art methods, we do not rely on handcrafted
features that are time-consuming to engineer, especially when this
has to be done for each input modality independently. Instead
we utilize deep learning methods to extract the learned features

3.7 Conclusion and future work 83

from the data. Because the input data is multimodal, our model
integrates two distinct feature learning methods, (1) deep belief
networks (DBN) for the processing of skeleton features and (2)
3D convolutional neural networks (3D CNN) for RGB-D data.
On top of that, we extended our feature learning model with an
HMM to incorporate temporal dependencies. This compound
model jointly segments and classifies the multimodal data stream.
This contrasts with most prior work, where the segmentation was
assumed to be known a priori.

We evaluated this model on the ChaLearn LAP dataset and
have shown the following. First, multimodal fusion of the different
inputs results in a clear improvement over unimodal approaches.
Moreover, this performance improvement is due to the complemen-
tary nature of the different input modalities. Skeleton features
are very good for segmentation but make more mistakes during
recognition, RGB-D features on the other hand allow for reliable
recognition but are not as good for segmentation. Second, the
integration of a more complex temporal model (the HMM) out-
performs averaging of the outputs, hereby demonstrating that
the temporal structure of the data can be exploited well. Third,
our experimental validation on the ChaLearn LAP dataset has
indicated that our method performs at almost the same level as
other state-of-the-art methods.

There are several directions for future work. With the increase
in the availability of dedicated processing units such as GPUs,
feature learning models will only become more prevalent. For this
reason, the study of multimodal approaches that extract com-
plementary representations from heterogeneous inputs, as done
in (Neverova et al., 2016), needs more exploration. Furthermore,
the integration of the HMM in our model is only a first way to
take the temporal structure into account. Therefore, it would be
interesting to verify whether the performance can be improved
further by the integration of other probabilistic models such as
conditional random fields or even more advanced variants (Wang

84 3 Gesture recognition using HMMs and 3D CNNs

et al., 2006). A second promising research path would be to
build a unified neural network to make better use of the temporal
component of the problem. For example by using recurrent neural
networks, possibly with LSTM (Graves et al., 2009) nodes.

4
Gesture recognition with

temporal convolutions and
recurrence

In the previous chapter, we modeled the temporal structure of
multimodal gesture sequences by integrating an HMM to enable
simultaneous segmentation and recognition. A drawback to this
method is that the different modules (HMM, 3D CNN and DBN)
act independently from each other and need to be trained and
evaluated in multiple stages. In this chapter, we unify the modules
and stages with an end-to-end neural network, backed by the many
successes in the deep learning field. This results in a significant
increase in accuracy and results in easier and faster training and
inference.

Introduction

A video can be seen as an ordered collection of images. Classifying
a video frame by frame with a convolutional neural network
(CNN) is bound to ignore motion characteristics, as there is no
integration of temporal information. Depending on the task at
hand, aggregating the spatial features produced by the CNN with
temporal pooling can be a viable strategy (Karpathy et al., 2014;
Ng et al., 2015). As we’ll show in this chapter, however, this
method is of limited use for gesture recognition.

86 4 Gesture recognition with temporal convolutions and recurrence

Apart from a collection of frames, a video can also be seen as
a time series. Some of the most successful models for time series
classification are recurrent neural networks (RNNs) with either
standard cells or long short-term memory (LSTM) cells (Hochre-
iter and Schmidhuber, 1997). Their ability to learn dynamic
temporal dependencies has allowed researchers to achieve break-
through results in, e.g., speech recognition (Graves et al., 2013),
machine translation (Sutskever et al., 2014) and image captioning
(Vinyals et al., 2015). Before feeding video into recurrent models,
we need to incorporate some form of spatial or spatiotemporal
feature extraction. This motivates the approach of combining
CNNs with RNNs. CNNs have unparalleled spatial (and spatio-
temporal, with added temporal convolutions) feature extraction
capabilities, while adding recurrence provides the modeling of
time dependencies.

For general video classification datasets like UCF-101 (Soomro
et al., 2012), Sports-1M (Karpathy et al., 2014) or HMDB-51
(Kuehne et al., 2011), the temporal aspect is of less importance
than in gesture recognition. For example, the appearance of a
violin almost certainly suggests the target class is “playing the
violin”, as no other class involves a violin. The model has no
need to capture motion information for this particular example.
That being said, there are some categories for which modeling
motion in some way or another is always beneficial. In the case
of gesture recognition, however, motion plays a more critical role.
Many gestures are not only defined by their spatial hand and/or
arm placement, but also by their motion pattern, i.e., the specific
sequence in which these placements occur.

In this chapter, we explore a variety of end-to-end trainable
deep networks for video classification applied to frame-wise gesture
recognition. We use the Montalbano dataset which was introduced
in the ChaLearn LAP 2014 Challenge (Escalera et al., 2014) and
was recorded with the 3D camera Microsoft Kinect. There are
20 classes of Italian gestures. The video files are not segmented,

4.2 Related work 87

which means that sequences typically contain several gestures.
We refer to Section 3.3 for further details.

We study two ways of capturing the temporal structure of
these videos. The first method involves temporal convolutions
to enable the learning of motion features. The second method
introduces recurrence to our networks, which allows the modeling
of temporal dynamics. This plays an essential role in gesture
recognition.

Related work

An extensive evaluation of CNNs on general video classification is
provided by Karpathy et al. (2014) using the Sports-1M dataset.
They compare different frame fusion methods to a baseline single-
frame architecture and conclude that their best fusion strategy
only modestly improves the accuracy of the baseline. Their work
is extended by Ng et al. (2015), who show that LSTMs achieve no
improvements over a temporal feature pooling scheme on the UCF-
101 dataset for human action classification and only marginal
improvements on the Sports-1M dataset. For this reason, the
single-frame and the temporal pooling architectures are important
baseline models.

Another way to capture motion is to convert a video stream to
a dense optical flow. This is a way to represent motion spatially
by estimating displacement vectors of each pixel. It is a core
component in the two-stream architecture described by Simonyan
and Zisserman (2014) and is used for human pose estimation (Jain
et al., 2014), for global video descriptor learning (Ng et al., 2015)
and for video captioning (Venugopalan et al., 2015). A disadvan-
tage of this technique is the greater computational preprocessing
complexity. However, we show that our models implicitly learn to
infer motion features without the need for optical flow calculations.

Neverova et al. (2016) present an extended overview of their

88 4 Gesture recognition with temporal convolutions and recurrence

winning solution for the ChaLearn LAP 2014 gesture recognition
challenge and achieve a state-of-the-art score on the Montalbano
dataset. They propose a multi-modal ‘ModDrop’ network oper-
ating at three temporal scales and use an ensemble method to
merge the features at different scales. They also developed a new
training strategy, ModDrop, that makes the network’s predictions
robust to missing or corrupted channels.

Most of the constituent parts in our architectures have been
used before in other work for different purposes. Learning mo-
tion features with three-dimensional convolution layers has been
studied by Ji et al. (2013) and Taylor et al. (2010) to classify
short clips of human actions. Baccouche et al. (2011) proposed
including a two-step scheme to model the temporal evolution of
learned features with an LSTM. Finally, the combination of a
CNN with an RNN has been used for speech recognition (Hannun
et al., 2014), image captioning (Vinyals et al., 2015) and video
narration (Donahue et al., 2015).

Network architectures

In this section, we briefly describe the different architectures we
investigate for gesture recognition in video. An overview of the
models is depicted in Figure 4.1. Note that we pay close attention
to the comparability of the network structures. The number of
units in the fully connected layers and the number of cells in the
recurrent models are optimized based on validation results for
each network individually. All other hyper-parameters mentioned
in this section and in Section 4.4.2 are optimized for the temporal
pooling architecture. As a result, improvements over our baseline
models are caused by architectural differences rather than better
optimization, other hyper-parameters or preprocessing.

CNN CNN CNN...

(a) Single-frame
One to one

CNN CNN CNN...

Temp Pool

(b) Temporal pooling
Many to one

CNN CNN CNN...

...
...

(c) RNN
Many to many

Conv ...
Temp Conv

Conv ...
Temp Conv

MP ...
Temp MP

...
...

×L

(d) Temporal convolutions
Many to one

Conv ...
Temp Conv

Conv ...
Temp Conv

MP ...

...
...

×L

...

(e) Temp. convolutions + RNN
Many to many

Figure 4.1: Overview (a) Single-frame CNN architec-
ture. (b) Temporal feature pooling network (max- or
mean-pooling), spanning multiple video frames. (c) Model
with bidirectional recurrence. (d) Adding temporal con-
volutions and three-dimensional max pooling (MP refers
to max pooling). (e) Architecture with added temporal
convolutions and bidirectional recurrence.

90 4 Gesture recognition with temporal convolutions and recurrence

Baseline models

Single-frame The single-frame architecture (Figure 4.1a) worked
well for general video classification (Karpathy et al., 2014), but
is not a very fitting solution for our frame-wise gesture recog-
nition setting. Nevertheless, this will give us an indication on
how much static images contribute to the recognition. It has 3×3
convolution kernels in every layer. Two convolutional layers are
stacked before performing max pooling on non-overlapping 2×2
spatial regions. The shorthand notation of the full architecture
is as follows: C(16) - C(16) - P - C(32) - C(32) - P - C(64) -
C(64) - P - C(128) - C(128) - P - D(2048) - D(2048) - S, where
C(nc) denotes a convolutional layer with nc feature maps, P a
max pooling layer, D(nd) a fully connected layer with nd units
and S a softmax classifier. We deploy leaky rectified linear units
(leaky ReLUs) in every layer. Their activation function is defined
as a : x 7→ max(αx, x), where α = 0.3. Leaky ReLUs seemed
to work better than conventional ReLUs and showed promising
results in other work (Maas et al., 2013; Graham, 2014; Dieleman
et al., 2015; Xu et al., 2015).

Temporal feature pooling The second baseline model ex-
ploits a temporal feature pooling strategy. As suggested by Ng
et al. (2015), we position the temporal pooling layer right before
the first fully connected layer as illustrated in Figure 4.1b. This
layer performs either mean-pooling or max pooling across all
the video frames in a certain window (16 or 32 frames in our
experiments). The structure of the CNN-component is identical
to the single-frame model. This network is able to collect all the
spatial features in a given time window. However, the order of
the temporal events is lost due to the nature of pooling across
frames.

4.3 Network architectures 91

Bidirectional recurrent models
An introduction to RNNs and LSTMs can be found in Section
2.4. An issue (in our case) with conventional recurrent networks
is that their states are built up from previous time steps. A
gesture, however, generally becomes recognizable only after a few
time steps, while the frame-wise nature of the problem requires
predictions from the very first frame. This is why we use bidirec-
tional recurrence, which enables us to process sequences in both
temporal directions.

Describing the proposed model (Figure 4.1c) formally, we start
with the CNN (identical to the single-frame model) transforming
an input frame Xt to a more compact vector representation vt:

vt = CNN(Xt). (4.1)

A bidirectional RNN computes two hidden sequences: the forward
hidden sequence h(f) and the backward hidden sequence h(b):

h
(f)
t = Hf (vt,h

(f)
t−1) and (4.2)

h
(b)
t = Hb(vt,h

(b)
t+1), (4.3)

where H represents a recurrent layer and depends on the type
of memory cells. Both, standard cells and LSTM cells will be
compared in this work.

Finally, the output predictions yt are computed with a softmax
classifier which takes the sum of the forward and backward hidden
states as input:

yt = softmax(Wy(h(f)
t + h(b)

t) + by). (4.4)

92 4 Gesture recognition with temporal convolutions and recurrence

Adding temporal convolutions
Our final set of architectures extends the CNN layers with tem-
poral convolutions (convolutions over time). This enables the
extraction of hierarchies of motion features and thus the capturing
of temporal information from the first layer, instead of depending
on higher layers to form spatiotemporal features. Performing
three-dimensional convolutions is one approach to achieve this.
However, this leads to a significant increase in the number of
parameters in every layer, making this method more prone to
overfitting. Therefore, we decide to factorize this operation into
two-dimensional spatial convolutions and one-dimensional tempo-
ral convolutions. This leads to fewer parameters and optionally
more nonlinearity if one decides to activate both operations. We
opt to not include a bias or another nonlinearity in the spatial
convolution step to maintain the comparability between architec-
tures.

First, we compute spatial feature maps St for every frame Xt.
A pixel at position (i, j) of the k-th feature map is determined as
follows:

S
(k)
tij =

N∑
n=1

(
W

(kn)
spat ∗X

(n)
t

)
ij
, (4.5)

where N is the number of input channels and Wspat are trainable
parameters. Second, we convolve across the time dimension for
every position (i, j), add the bias b(k) and apply the activation
function a:

V
(k)

tij = a

(
b(k) +

M∑
m=1

(
W

(km)
temp ∗ S

(m)
ij

)
t

)
, (4.6)

where the variables Wtemp and b are trainable parameters and M
is the number of spatial feature maps.

Two different architectures are proposed using this new layer.
In the first model (Figure 4.1d), we replace the convolutional

4.4 Experiments and analysis 93

layers of the single-frame CNN with the spatiotemporal layer
defined above. Furthermore, we apply three-dimensional max
pooling to reduce spatial as well as temporal dimensions while
introducing slight translational invariance in time. Note that
this architecture implies a sliding window approach for frame-
wise classification, which is computationally intensive. In the
second model, illustrated in Figure 4.1e, the time dimensionality
is retained throughout the network. That means we only carry
out spatial max pooling. Because of this, we are able to stack
a bidirectional RNN with LSTM cells, responding to high-level
temporal dependencies. It also incidentally resolves the need
for a sliding window approach to implement frame-wise video
classification.

Experiments and analysis

Data preprocessing
The models are evaluated on the ChaLearn Montalbano gesture
recognition dataset (described in Section 3.3). To speed up the
training, we crop part of the images containing the user and
rescale them to 64 by 64 pixels using the skeleton information.
Other than that, we do not use any pose data. We show in Section
4.4.3 that we even achieve good results when we do not crop the
images and leave out depth information. Figure 4.2 illustrates the
cropping of an input image. The head and the hip positions are
tracked by the Microsoft Kinect API. We found these tracking
points to be consistent and stable. Based on these two points we
crop a square region of interest.

Lastly, we experiment with feeding the networks with dense
optical flow channels. These inputs are calculated with the tech-
niques used in Farnebäck (2003).

94 4 Gesture recognition with temporal convolutions and recurrence

(a) RGB, without cropping. (b) RGB, cropped.

Figure 4.2: Preprocessing The blue and yellow circle
indicate the head and hip position respectively. This pose
information is provided by the Microsoft Kinect API. The
red square stipulates the cropped region.

End-to-end training
We train our models from scratch in an end-to-end fashion, back-
propagating through time (BTT) for our recurrent architectures.
The network parameters are optimized by minimizing the cross-
entropy loss function using mini-batch gradient descent with the
Adam update rule (see Section 2.5.2.3).

All our models are trained the same way with early stopping,
a mini-batch size of 32, a learning rate of 10−3 and an exponential
learning rate decay. Before training, we initialize the weights with
a random orthogonal initialization method (Saxe et al., 2013).

Recurrent networks The video files in the Montalbano
dataset contain approximately one to two minutes of footage,
consisting of multiple gestures. Recurrent models are trained on
random fragments of 64 frames and produce 64 predictions, one
for every frame. To summarize, a data sample has 4 channels

4.4 Experiments and analysis 95

(RGB-D), 64 frames each, with a resolution of 64 by 64 pixels; or
in shorthand notation: 4@64×64×64. We optimized the number
of cells for each model based on validation results. For LSTM
cells, we only saw a small improvement between 512 and 1024
units, so we settled at 512. For RNNs with standard cells, we used
2048 units. The location of gestures within the long sequences
is not given. A gesture is generally about 20 to 50 frames long.
If a small fraction of a gesture is located at the beginning or
the end of the 64 considered frames, the model does not have
enough information to label these frames correctly. That is why
we allow a buildup in both forward and backward direction for
evaluation; we feed 64 frames into the RNN and keep the middle
32 for evaluation.

Non-recurrent networks The single-frame CNN is trained
frame by frame and all other non-recurrent networks are trained
with the number of frames optimized for their specific architecture.
The best number of frames to mean-pool across is 32, determined
by validation scores with tested values in [8, 16, 32, 64]. In the case
of max pooling, we find that pooling over 16 frames gives better
results. Also, pretraining the CNNs frame-by-frame and fine-
tuning with temporal max pooling gave slightly improved results.
We observed no improvements, however, using this technique with
temporal mean-pooling. The architecture with added temporal
convolutions and three-dimensional max pooling showed optimal
results by considering 32 surrounding frames. The targets for
all the non-recurrent networks are the labels associated with the
centermost frame of the input video fragment. We evaluate these
models using a sliding window with single-frame steps.

Regularization and data-augmentation We employed
many different methods to regularize the deep networks. Data
augmentation has a significant impact on generalization. For all
our trained models, we used the same augmentation parameters:

96 4 Gesture recognition with temporal convolutions and recurrence

[−5, 5] pixel translations in vertical direction and [−10, 10] hori-
zontal, [−2, 2] rotation degrees, [−2, 2] shearing degrees, [1

1.1 , 1.1]
image scaling factors and [1

1.2 , 1.2] temporal scaling factors. From
each of these intervals, we sample a random value for each video
fragment and apply the transformations online using the CPU.
Dropout with p = 0.5 is used on the inputs of every fully connected
layer. Furthermore, using leaky ReLUs instead of conventional
ReLUs and factorizing three-dimensional convolutions into spatial
and temporal convolutions also reduce overfitting.

Results
We follow the ChaLearn LAP 2014 Challenge score to measure
the performance of our architectures. This way, we can compare
with previous work on the Montalbano dataset. The competition
score is based on the Jaccard index and is described in more detail
in Section 3.6.1.2. Remember that, for two binary label sequences,
the Jaccard index can be seen as the overlap rate between both.

An overview of the results for our different architectures is
shown in Table 4.1. The predictions of the single-frame baseline
achieve a Jaccard index below 0.5. This was to be expected
as no motion features are extracted in this architecture. We
observe a significant improvement with temporal feature pooling
(a Jaccard index of 0.775 vs. 0.465). Furthermore, mean-pooling
performs better than max pooling. Adding temporal convolutions
and three-dimensional max pooling further improves the Jaccard
index to 0.842.

The four last entries in Table 4.1 use recurrent networks.
Surprisingly, although the RNNs are only acting on high-level
spatial features, they are surpassing a CNN learning hierarchies
of motion features (a Jaccard index of 0.842 vs. 0.888). Finally,
combining the temporal convolution architecture with an RNN
improves the score even more (LSTM: 0.906, Standard: 0.900).
This deep network not only learns multi-level spatiotemporal

A
rc

hi
te

ct
ur

e
Ja

cc
ar

d
in

de
x

P
re

ci
si

on
R

ec
al

l
E

rr
or

ra
te

*

Si
ng

le
-fr

am
e
C
N
N

(F
ig
ur
e
4.
1a
)

0.
46
5

67
.8
6%

57
.5
7%

20
.6
8%

Te
m
p
m
ax

po
ol
in
g
(F

ig
ur
e
4.
1b

)
0.
74
8

85
.0
3%

82
.9
2%

8.
66
%

Te
m
p
m
ea
n
po

ol
in
g
(F

ig
ur
e
4.
1b

)
0.
77
5

85
.9
3%

85
.8
0%

8.
55
%

Te
m
p
co
nv

(F
ig
ur
e
4.
1d

)
0.
84
2

89
.3
6%

90
.1
5%

4.
67
%

R
N
N
,s

ta
nd

ar
d
ce
lls

(F
ig
ur
e
4.
1c
)

0.
88
5

92
.7
7%

93
.5
6%

3.
58
%

R
N
N
,L

ST
M

ce
lls

(F
ig
ur
e
4.
1c
)

0.
88
8

93
.7
5%

93
.2
8%

3.
55
%

Te
m
p
co
nv

+
R
N
N
,s

ta
nd

ar
d
(F

ig
ur
e
4.
1e
)

0.
90
0

93
.7
6%

94
.4
7%

2.
82
%

Te
m
p
co
nv

+
R
N
N
,L

ST
M

(F
ig
ur
e
4.
1e
)

0.
90

6
94

.4
9%

94
.5

7%
2.

77
%

Ta
bl

e
4.

1:
A
co
m
pa
ris
on

of
th
e
re
su
lts

fo
ro

ur
di
ffe

re
nt

ar
ch
ite

ct
ur
es

on
th
e
M
on

ta
lb
an
o
ge
st
ur
e
re
co
gn

iti
on

da
ta
se
t
(R

GB
-D

cr
op

pe
d
im

ag
es
,w

ith
ou

t
op

tic
al

flo
w
).

T
he

Ja
cc
ar
d
in
de
x
in
di
ca
te
s
th
e
m
ea
n
ov
er
la
p

be
tw
ee
n
th
e
bi
na
ry

pr
ed
ic
tio

ns
an
d
th
e
bi
na
ry

gr
ou

nd
tr
ut
h
ac
ro
ss

ge
st
ur
e
ca
te
go
rie

s.
W
e
al
so

co
m
pu

te
pr
ec
isi
on

an
d
re
ca
ll
sc
or
es

fo
re

ac
h
ge
st
ur
e
cla

ss
an
d
re
po

rt
th
e
m
ea
n
sc
or
e
ac
ro
ss

cla
ss
es
.

*T
he

er
ro
rr

at
e
is
ba
se
d
on

m
aj
or
ity

vo
te
d
fra

m
e-
wi
se

pr
ed
ict

io
ns

fro
m

iso
la

te
d
ge
st
ur
e
fra

gm
en
ts
.

98 4 Gesture recognition with temporal convolutions and recurrence

features, but is capable of modeling temporal dynamics within
them.

The difference in performance for the two types of cells is
very small and they can be considered equally capable for this
type of problem where temporal dependencies are not too long-
ranged. However, our training phase is considerably more stable
and roughly twice as fast with LSTM cells. Models with standard
cells require tuning of hyperparameters to even have a converging
setup, while we never encounter a diverged experiment with LSTM
networks.

In Table 4.2, we compare our results with previous work. Our
best model outperforms the method of Neverova et al. (2016)
when we only consider RGB-D pixels as input features (0.906
vs. 0.836). When we remove depth information and perform no
preprocessing other than rescaling the images, we still achieve
better results (0.842). The previous best performing score (0.870),
using the skeletal stream as input features, is outperformed by
our model without pose information (0.906) nor depth images
(0.876). We observe no improvement with the use of optical flow
for this task. This suggests that the models are able to capture
motion from the RGB data (see further and Figure 4.4) and that
the optical flow doesn’t add useful information in our case.

To illustrate the differences in output predictions of the differ-
ent architectures, we show them for a randomly selected sequence
in Figure 4.3. We see that the single-frame CNN has trouble classi-
fying the gestures, while the temporal pooling is significantly more
accurate. However, the latter still has difficulties with boundaries.
Adding temporal convolutions shows improved results, but the
output contains more jagged predictions. This seems to disappear
by introducing recurrence. The output of the bidirectional RNN
matches the target labels strikingly well. A possible explanation
for this would be that the convolutional layers only have a limited
temporal reach (due to the small filter size) while RNNs can model
dependencies across 32 frames in each direction.

M
od

el
C

ro
p

D
ep

th
O

pt
ic

al
F

lo
w

P
os

e
Ja

cc
ar

d
In

de
x

W
u
et

al
.(
20
16
)
(D

BN
,3

D
C
N
N
,H

M
M
)

ye
s

ye
s

no
ye

s
0.
80
9

C
ha

ng
(2
01
4)

(M
R
F,

K
N
N
,P

C
A
,H

oG
)

ye
s

no
no

ye
s

0.
82
7

M
on

ni
er

et
al
.(
20
14
)
(A

da
Bo

os
t,

H
oG

)
ye

s
ye

s
no

ye
s

0.
83
4

N
ev
er
ov
a
et

al
.(
20
16
)
(M

ul
ti-
Sc
al
e
D
N
N
)

ye
s

ye
s

no
no

0.
83
6

N
ev
er
ov
a
et

al
.(
20
16
)
(M

ul
ti-
Sc
al
e
D
N
N
)

ye
s

ye
s

no
ye

s
0.
87
0

no
no

no
no

0.
84
2

Te
m
p
C
on

v
+

LS
T
M

ye
s

no
no

no
0.
87
6

ye
s

ye
s

no
no

0.
90

6
ye

s
ye

s
ye

s
no

0.
89
5

Ta
bl

e
4.

2:
M
on

ta
lb
an
o
ge
st
ur
e
re
co
gn

iti
on

da
ta
se
tr

es
ul
ts

co
m
pa
re
d
to

pr
ev
io
us

wo
rk
.

Cr
op

:
th
e
cr
op

pi
ng

of
sp
ec
ifi
c
ar
ea
si
n
th
e
vid

eo
us
in
g
th
e
sk
ele

ta
li
nf
or
m
at
io
n.

D
ep

th
:
th
e
us
ag
e
of

de
pt
h-
m
ap
s.

O
pt

ica
lF

lo
w
:

th
e
in
clu

sio
n
of

op
tic

al
flo

w
ch
an
ne
ls.

Po
se
:
th
e
us
ag
e
of

th
e
sk
ele

ta
ls
tr
ea
m

as
fe
at
ur
es
.
N
ot
e
th
at

ev
en

wh
en

we
do

no
t
us
e
de
pt
h
im

ag
es
,w

e
st
ill

ac
hi
ev
e
be
tt
er

re
su
lts
.

Single-Fram
e

C
N

N

Tem
p

M
ean-Pooling

Tem
p

C
onv

Tem
p

C
onv

+
LSTM

0
57

Tim
e

(s)

Targets

Figure
4.3:

T
he

output
probabilities

are
show

n
for

a
sequence

fragm
ent

in
the

test
set.

T
he

dashed
line

represents
silences.

The
non-recurrent

m
odels

m
ake

m
ore

m
istakes

and
have

diffi
culties

m
aking

hard
decisions

to
w
here

the
gesture

starts
orends

and
are

unable
to

sm
ooth

out
predictions

in
tim

e.
Adding

recurrence
enables

deep
networks

to
learn

the
behaviorofthe

m
anualannotators

with
great

accuracy.

4.4 Experiments and analysis 101

In Figure 4.4, we show that adding temporal convolutions
enables neural networks to capture motion information. When
the user is standing still, the units of the feature map are inac-
tive, while the feature map from the network without temporal
convolutions has a lot of active units. When the user is moving,
the feature map shows strong activations at the movement loca-
tions. This suggests that the model has learned to extract motion
features.

Failure cases
The confusion matrix in Figure 4.5 visualizes the performance
of our best model (temporal convolutions + recurrence) for each
gesture. The diagonal values clearly all have high values, which
indicates a highly accurate classification. The most occurring
error is the prediction of a silence, while the target is a particular
gesture. This is due to the fact that the most common class is
a silence. This imbalance causes the model to bet on a silence
when the input is too confusing. Also, a contributing factor is the
rare occurrence of noise gestures that are labeled as silences.

There are very few confusions between gestures. We depict the
most common confusions in Figure 4.6. The gestures “Vieni qui”
(Eng: come here) and “Vattene”(Eng: begone) both raise one arm
and move their hand towards or away from the user. When it is
not clear in which direction the hand moves, the models confuses
both gestures. The “Frega niente” and “Perfetto” gestures both
start from near the mouth and move away, while “Buonissimo”
and “Cosa ti farei” stay near the mouth for a while.

In Figure 4.7 we show the video samples for which the Jaccard
Index is the lowest. There is one outlier sample (Figure 4.7a)
where the recognition fails almost completely. The user is in the
corner of the screen and the gestures are sometimes performed
off screen. A second form of failure involves noise (or out-of-
vocabulary) gestures, e.g. there are two noise gestures in the

1024 Gesture recognition with temporal convolutions and recurrence

While standing still

RGB Input Spatial
Feature Map

Spatiotemporal
Feature Map

While moving

RGB Input Spatial
Feature Map

Spatiotemporal
Feature Map

Figure 4.4: Motion features This figure illustrates the
effect of integrating temporal convolutions. The depicted
spatial feature map is the most active 4-layer-deep feature
map, extracted from an architecture without temporal con-
volutions. The spatiotemporal feature map is extracted
from a model with temporal convolutions. The strong ac-
tivations in the spatiotemporal feature maps while moving
indicate learned motion features.

fragment in Figure 4.3. These should be classified as silences, since
the Montalbano dataset does not provide annotations for them.
However, as they are fairly rare, they are sometimes confused
for a gesture. The video sample in Figure 4.7b is packed with
noise gestures, which explains the poor performance. Another
difficulty is the posture of a user. Most users keep their posture

4.4 Experiments and analysis 103

"b
la

nk
"

va
tte

ne
vi

en
iq

ui
pe

rfe
tto

fu
rb

o
ch

ed
ue

pa
lle

ch
ev

uo
i

da
cc

or
do

se
ip

az
zo

co
m

bi
na

to
fre

ga
ni

en
te ok

co
sa

tif
ar

ei
ba

st
a

pr
en

de
re

no
nc

en
ep

iu
fa

m
e

ta
nt

ot
em

po
bu

on
is

si
m

o
m

es
si

da
cc

or
do

so
no

st
uf

o
Predicted class

"blank"
vattene
vieniqui
perfetto

furbo
cheduepalle

chevuoi
daccordo
seipazzo

combinato
freganiente

ok
cosatifarei

basta
prendere

noncenepiu
fame

tantotempo
buonissimo

messidaccordo
sonostufo

Ta
rg

et
 c

la
ss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.5: The confusion matrix for the model with
temporal convolutions and LSTM cells, evaluated on the
test set.

straight. This causes the neural networks to not be invariant
of upper body movement as in Figure 4.7c. Lastly, we observe
that one particular background (Figure 4.7d) consistently gives
lower Jaccard Index scores than others. Although it is difficult
to determine the cause, we assume the reason for this is the poor
lighting of the environment.

1044 Gesture recognition with temporal convolutions and recurrence

(a) Top: “Vieni qui”. Bottom: “Vattene”.

(b) Top: “Frega niente”. Bottom: “Perfetto”.

(c) Top: “Buonissimo”. Bottom: “Cosa ti farei”.

Figure 4.6: Three examples to illustrate confusion be-
tween similar gestures.

4.5 Conclusion and future work 105

(a) The user is almost off camera.
Jaccard Index = 0.378.

(b) The video sample consists of
noise gestures. Jaccard Index =
0.652.

(c) The user posture is not
straight. Jaccard Index = 0.698.

(d) This background consistently
gives low scores. Jaccard Index
= 0.711.

Figure 4.7: The four lowest scoring test set video samples
are depicted. This is evaluated with the best performing
model.

Conclusion and future work

We showed in this chapter that adding bidirectional recurrence
and temporal convolutions improves frame-wise gesture recogni-
tion in video significantly. We observed that RNNs responding
to high-level spatial features perform much better than single-
frame and temporal pooling architectures, without the need to
take into account the temporal aspect in the lower layers of the

1064 Gesture recognition with temporal convolutions and recurrence

network. However, adding temporal convolutions in all layers
of the architecture has a notable impact on the performance, as
they are able to learn hierarchies of motion features, unlike RNNs.
Standard cells and LSTM cells appear to be equally strong for
this problem. Furthermore, we observed that RNNs outperform
non-recurrent networks and are able to predict the beginning
and ending frames of gestures with great accuracy, whereas other
models show uncertainty at these boundaries.

In the following chapters, we will build upon this work for
research in the domain of sign language recognition. This is even
more challenging than gesture recognition. The vocabulary is
larger, the differences in finger positions and hand movements
are more subtle and signs are context dependent, as they are
part of a language. Sign language is not related to written or
spoken language, which complicates annotation and translation.
Moreover, signers communicate simultaneously with facial, manual
(both hands are separate communication channels) and body
expressions. This means that sign language video cannot be
translated the way speech recognition can transcribe audio to
written sentences.

5
Sign language recognition

in video corpora

In Chapter 4, we showed that deep neural networks are very
successful for gesture recognition and gesture spotting in spatio-
temporal data. Our developed system is able to recognize 20
different Italian gestures (i.e., emblems). We achieved a classifica-
tion accuracy of 97.23% in the ChaLearn 2014 Looking At People
gesture spotting challenge (Escalera et al., 2014). This gives us
an indication that deep neural networks could be useful for more
complex tasks in the field.

In this chapter, we take it a step further by investigating
sign language recognition (SLR). The problem is approached by
classifying signs from the Corpus VGT (Van Herreweghe et al.,
2015) (the Flemish Sign Language Corpus), the Corpus NGT
(Crasborn et al., 2008; Crasborn and Zwitserlood, 2008) (the
Dutch Sign Language Corpus) and the ChaLearn LAP RGB-
D Continuous Gesture Dataset (ConGD) (Wan et al., 2016).
Furthermore, we investigate cross-domain feature learning to boost
the performance to cope with the fewer Corpus VGT annotations.

Three different experiments are analyzed in this chapter. We
go from isolated sign recognition in Section 5.2 to continuous
SLR in Section 5.3 using the Corpus NGT and the Corpus VGT.
Finally, we show the results for the continuous recognition of
gestures and signs in Section 5.3.4.3 using the ChaLearn LAP
ConGD.

108 5 Sign language recognition in video corpora

Figure 5.1: A sample from the Corpus NGT (Radboud
University Nijmegen) (Crasborn et al., 2008; Crasborn and
Zwitserlood, 2008), filmed from two viewpoints.

Sing language video corpora

This section describes the three different video corpora used for
this research. The Corpus NGT and the Corpus VGT are sign
language video corpora that use similar annotation conventions
and software. In contrast to the ChaLearn LAP ConGD, they are
not intended for training machine learning models. That is why
they require a lot more data cleaning, like coping with missing
and incorrect data.

Sign language corpora are annotated with glosses. A gloss is
the written equivalent of a sign or gesture. Because a lot of signs
can’t be directly translated to known words, some annotation
conventions are predefined. These gloss conventions are typically
described in the enclosed documentation of the corpus.

Corpus NGT

The Corpus NGT (Crasborn et al., 2008; Crasborn and Zwitser-
lood, 2008) (Figure 5.1) contains video of Deaf signers using Dutch
Sign Language from the Netherlands performing tasks such as

5.1 Sing language video corpora 109

retelling comic strips, discussing an event and debating on chosen
topics. This project was executed by the sign language group
at the Radboud University Nijmegen between 2006 and 2008,
and was funded by The Netherlands Organisation for Scientific
Research (NWO). The corpus is publicly available and is archived
by the Max Planck Institute for Psycholinguistics.

Every narrative or discussion fragment forms a clip of its own,
with more than two thousand clips and annotated with ELAN
software. As illustrated in Figure 5.2, the ELAN software allows
for accurate and detailed annotations. For example, left and right
hand can be annotated separately. After cleaning the data, we are
able to extract a total of 55 224 video-gloss pairs from 78 different
Deaf signers. The clips are available at 25 frames per second with
a resolution of 708 by 288 pixels.

Corpus VGT

The Corpus VGT (Van Herreweghe et al., 2015) (Figure 5.3)
contains video of Deaf signers using Flemish Sign Language per-
forming similar tasks as the ones from the Corpus NGT: telling
stories, discussing a given topic, etc. The annotations are again
created with the ELAN software package. The project started in
Juli 2012 and ended in November 2015 at Ghent University, in
collaboration with the Linguistics Group VGT of KU Leuven Cam-
pus Antwerp, and promoted by Prof. Dr. Mieke Van Herreweghe
(Ghent University) and Prof. Dr. Myriam Vermeerbergen (KU
Leuven Campus Antwerp). The corpus contains about 140 hours
(5TB) of video of which a small fraction is annotated. The videos
are recorded at 50 frames per second and have a resolution of 960
by 544 pixels.

About 120 Deaf signers have contributed to the project as
informants. The selection of the informants takes into account
the age, the gender and the region of the person. The corpus is
created to stimulate the research into and the education of the

Figure
5.2:

The
ELAN

software
enables

detailed
and

accurate
annotations

ofsign
language

video
corpora.

5.1 Sing language video corpora 111

Figure 5.3: A sample from the Corpus VGT (Ghent
University) (Van Herreweghe et al., 2015), filmed from
three viewpoints.

Flemish Sign Language. Furthermore, it is also a way to store and
archive some aspects of the Flemish Deaf culture. After cleaning
the data, we extracted a total of 12 599 video-gloss pairs from 53
different Deaf signers.

As Figure 5.4 shows, there is a class imbalance for both corpora.
This means that accuracy measures will be highly skewed. For
example, only predicting the most common sign (which is “ME”)
for every sample across the whole dataset already results in 30.9%
and 11.2% accuracy for the Corpus NGT and the Corpus VGT
respectively. This is definitely something to keep in mind when
analyzing the classification results.

ChaLearn LAP ConGD

The ChaLearn LAP RGB-D Continuous Gesture Dataset (ConGD)
(Wan et al., 2016) is a large-scale gesture dataset and has been used
for two rounds of classification challenges: in 2016 and in 2017.
The gestures come from multiple sources, including sign language,
underwater signs, helicopter and traffic signals, pantomimes and
symbolic gestures, Italian gestures, and body language (Figure
5.5). The database consists of 249 different gesture classes per-

112 5 Sign language recognition in video corpora

0 1 2 3 4 5
Sign index, ordered by frequency

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Re
la

tiv
e

fre
qu

en
cy

Corpus NGT
Corpus VGT

Figure 5.4: The relative frequency for the five most
common signs in both corpora. The class imbalance is
significant in both corpora, but is especially prevalent for
the Corpus NGT (Crasborn et al., 2008; Crasborn and
Zwitserlood, 2008).

Figure 5.5: A few samples from the ChaLearn LAP
ConGD challenge (Wan et al., 2016).

formed by 21 individuals. The videos are recorded with a first
generation Microsoft Kinect RGB-D camera. They are available

5.2 Isolated sign recognition 113

at a frame rate of 10 frames per second and a resolution of 320 by
240 pixels. Each class occurs at least two hundred times with a
total of 47 933 gestures in 22 535 video files. Each video contains
one or more gestures and each gesture is annotated with the start
frame index and the end frame index. These annotations are
not very accurate, however. For example, the video clips aren’t
annotated with silences. Instead, the previous gesture annotation
is extended up until the next gesture starts.

Isolated sign recognition

In this section, we investigate the isolated sign recognition in sign
language video corpora and how we can use cross-domain learning
for the smaller Corpus VGT. As we have the exact temporal
annotation of where a sign starts and ends, we can cut all the sign
clips out of the videos (i.e., sign isolation). Now we can build a
classification model, because every sign clip has a matching gloss.

Data preparation
The input frames undergo some minimal preprocessing before feed-
ing it to the model: the RGB channels are converted to gray-scale,
resized to 128x128 pixels and the previous frame is subtracted
from the current frame to remove static information (see Figure
5.6). Furthermore, each frame is normalized by subtracting the
mean and dividing by the standard deviation (ZMUV normalized).
The clips are sampled at 6.25 frames per second and we take the
8 centermost frames of the sign. For each corpus, the 100 most
frequently used signs are extracted together with their gloss. The
data is split into three sets (for each corpus): 70% training set,
20% test set and 10% validation set.

114 5 Sign language recognition in video corpora

Figure 5.6: Left: Original RGB-data. Right: Model input.
The RGB channels are converted to gray-scale, resized to
128x128 pixels and the previous frame is subtracted from
the current frame to remove static information.

Network architecture and training setup
The classification model that we use is a convolutional neural
network (CNN). A basic overview of the network architecture
is illustrated in Figure 5.7. The shorthand notation of the full
architecture is as follows: C3

32-P -C3
64-P -C3

128-P -C3
256-P -C3

512-P -
D2048-D2048-S, where Ca

b denotes a stacked convolutional layers
with b feature maps and 3x3 filters, P a max-pooling layer with
2x2 pooling regions, Dc a fully connected layer with c units and
S a softmax classifier. The eight video frames per sample are
considered as eight channels of the input layer of the CNN. We do
not use recurrence for this configuration, because the time series
only span eight frames.

To train the model, we employ the Adam update rule as
described in Section 2.5.2.3. The weights are initialized as orthog-
onal matrices (Saxe et al., 2013). We regularize the model with
dropout in the fully connected layers and with data augmentation.
To augment the data, each sample is translated by a random
number of pixels up to 32, rotated by a random angle up to 32
degrees and scaled by a random factor in [1

1.2 , 1.2].

V
G

T
+

N
G

T

V
G

T

3x
3

C
on

vo
lu

tio
ns

2x
2

M
ax

-p
oo

lin
g

N
G

T

In
pu

t s
eq

ue
nc

e

Fu
lly

 c
on

ne
ct

ed

S
of

tm
ax

Fi
gu

re
5.

7:
Th

e
ar
ch
ite

ct
ur
e
ov
er
vi
ew

of
th
e
de
ep

ne
ur
al

ne
tw
or
k
us
ed

in
th
is
wo

rk
.
Al
ll
ay
er
s
ar
e
sh
ar
ed

am
on

g
co
rp
or
a,

ex
ce
pt

fo
rt

he
so
ftm

ax
cla

ss
ifi
er
.
Th

is
wi
ll
bo

os
tt

he
pe
rfo

rm
an
ce

fo
rt

he
Co

rp
us

VG
T,

as
it
lea

rn
s
be
tt
er

fe
at
ur
es

us
in
g
th
e
Co

rp
us

N
GT

wi
th

m
or
e
an
no

ta
tio

ns
.

116 5 Sign language recognition in video corpora

10 20 50 100
Total number of signs used

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Top-1 Top-3 Top-5 Top-10

Figure 5.8: Corpus NGT top-N accuracies. A measure
indicating the probability of the correct answer being within
the model’s N best guesses.

Results

Corpus NGT

The top-N accuracy is a measure indicating the probability that
the correct answer is within the model’s N best guesses. The
top-N accuracies of the test set for the Corpus NGT are depicted
in Figure 5.8. The CNN achieves a top-1, top-3, top-5 and top-10
accuracy of 56.2%, 75.7% and 82.1% and 88.8% respectively for a
data set in which 100 signs occur. This is especially interesting
for automatic corpus annotation, where providing a list with the
N best guesses is appropriate.

As mentioned above, we have to keep in mind the class imbal-
ance. The confusion matrix shows the fraction of true positives
for each class (each sign) on the diagonal. It also tells us which
classes it gets confused with. To have a better insight into the
model’s performance, we show the confusion matrix in Figure 5.9.
Not surprisingly, almost all classes get confused with frequently

5.2 Isolated sign recognition 117

0 20 40 60 80
Predicted class index, ordered by frequency

0

20

40

60

80

Ta
rg

et
 c

la
ss

 in
de

x,
 o

rd
er

ed
 b

y
fre

qu
en

cy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.9: Corpus NGT confusion matrix indicating
the classification performance of the deep neural network.

occurring ones. The CNN has learned to bet on common glosses
when it is unsure about a certain input, because more often than
not it will get rewarded for that. Other misclassification is due to
signs that are hard to distinguish from each other.

Corpus VGT

To cope with the smaller amount of annotations for the Corpus
VGT compared to the Corpus NGT, we train a shared model on
both corpora (Figure 5.7). This cross-domain learning is a form
of transfer learning, where the knowledge of one or more domains
(in this case the Corpus NGT) is useful for other domains. Our

118 5 Sign language recognition in video corpora

10 20 50 100
Total number of signs used

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Top-1 Top-3 Top-5 Top-10

Figure 5.10: Corpus VGT top-N accuracies with cross-
domain learned features. The red outline shows the
improvement compared to the accuracies without cross-
domain learning.

motivation is that the learned features for both domains should be
similar, except for the softmax classifier. All sign languages have
similar visual features: they consist of hand, arm, face and body
expressions. We hope to capture these generic building blocks in
order to boost the performance for the Corpus VGT.

In Figure 5.10, the top-N accuracies are shown. It achieves a
top-1, top-3, top-5 and top-10 accuracy of 39.3%, 60.3%, 69.9%
and 81.5% respectively for 100 signs. To show the improvement
using the cross-domain learning, the sensitivity (true positive rate)
increase for each class is depicted in Figure 5.11. We clearly see
a significant improvement for most signs, but a few classes are
negatively affected by it. The resulting confusion matrix is shown
in Figure 5.12. The errors are more spread out than the ones for
the Corpus NGT, because the class imbalance in the data set is
less prevalent.

0
20

40
60

80
Cl

as
s

in
de

x,
 o

rd
er

ed
 b

y
fre

qu
en

cy

0.
4

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

Sensitivity increase Fi
gu

re
5.

11
:

C
or

pu
s

V
G

T
se
ns
iti
vi
ty

(t
ru
e
po

sit
iv
e
ra
te
)
in
cr
ea
se

co
m
pa
re
d
to

th
e
m
od

el
wi
th
ou

tc
ro
ss
-

do
m
ai
n
fe
at
ur
e
lea

rn
in
g,

de
pi
ct
ed

fo
re

ac
h
sig

n.
So

m
e
sig

ns
ar
e
ne
ga
tiv

ely
aff

ec
te
d
by

it.
Fu

rt
he
rr

es
ea
rc
h

wi
ll
be

re
qu

ire
d
to

de
te
rm

in
e
th
e
re
as
on

.

120 5 Sign language recognition in video corpora

0 20 40 60 80
Predicted class index, ordered by frequency

0

20

40

60

80

Ta
rg

et
 c

la
ss

 in
de

x,
 o

rd
er

ed
 b

y
fre

qu
en

cy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.12: Corpus VGT confusion matrix with cross-
domain learned features.

Continuous sign language recog-
nition

While the models in the previous section achieve promising results
on isolated sign recognition, a temporal segmentation is assumed.
The segmentation of a video into isolated signs is not easily
automated, because there is no rest pose in between signs and a
transition movement is hard to distinguish from a sign movement.

In this section, we approach the problem as a continuous
frame by frame classification task, where the temporal locations

5.3 Continuous sign language recognition 121

of gestures and signs are not given during evaluation. Furthermore,
we extrapolate the research to continuous gesture recognition with
a large vocabulary.

Given a video file, we want to produce gloss predictions for
every frame. Using a sliding window approach, a number of frames
are fed into the model. The model then outputs a prediction for
either the middle frame in the case of a many-to-one network or
all the input frames in the case of a many-to-many network.

Residual building-block

The models in this section use a residual network layout (He
et al., 2016) consisting of so-called residual building blocks. Our
adapted residual block is depicted in Figure 5.13.

The first two operations in the residual block are spatial
convolutions with filter size 3x3 followed by temporal convolutions
with filter size 3. This enables the extraction of hierarchies of
motion features and thus the capturing of temporal information
from the first layer on, instead of depending on higher layers
to form spatiotemporal features. Performing three-dimensional
convolutions is one approach to achieve this. However, this leads
to a significant increase in the number of parameters in every
layer, making this method more prone to overfitting. Therefore,
like in Chapter 4, we decide to factorize this operation into two-
dimensional spatial convolutions and one-dimensional temporal
convolutions (see Section 4.3.3 for a formal definition). This
leads to fewer parameters and optionally more nonlinearity if one
decides to activate both operations. We opt to not include a bias
or another nonlinearity in the spatial convolution step.

The convolutions are followed by batch normalization (Ioffe
and Szegedy, 2015). This method will shift the internal values to
a mean of zero and scale to a variance of one in every layer across
the mini-batch. This will prevent the change of distribution of
every layer during training, the so-called internal covariant shift

122 5 Sign language recognition in video corpora

1x3x3

3x1x1

ELU

Batch Norm

1x3x3

3x1x1

Batch Norm

ELU

Figure 5.13: The residual building-block used in the deep
neural networks for both models.

problem. We found that training with batch normalization was
crucial, because the network didn’t converge without it.

The nonlinearity in the model is introduced by Exponential
Linear Units (ELUs) (Clevert et al., 2016). This activation func-
tion speeds up training and achieves better regularization than
Rectified Linear Units (ReLUs) (Nair and Hinton, 2010) or Leaky
Rectified Linear Units (LReLUs).

Following the original building block in (He et al., 2016), the
previously described operations are stacked one more time, with
the exception of the ELU. Right before the final activation, the
input of the block is added. This addition is what makes the
model a residual network. Residual networks allow to train deeper
networks more easily, because there are shortcut connections (the
aforementioned addition) to the input layers. This solves the

5.3 Continuous sign language recognition 123

degradation problem, where traditional networks see a decrease
in performance when stacking too many layers.

Network Architecture
Two different architectures are employed for the sign language
recognition and the gesture recognition task. The sign language
recognition network (Figure 5.14) has a many-to-one configuration
and the gesture recognition network (Figure 5.15) has a many-to-
many configuration. A many-to-one configuration inputs multiple
frames to classify a single frame: the middle frame, for example.
A many-to-many configuration inputs multiple frames to classify
multiple frames at the same time.

In the previous chapter, we observe an increase in performance
for the many-to-many configuration with recurrence compared
to the many-to-one configurations without recurrence. However,
when using this network for the sign language recognition tasks, we
encounter difficulties in the training phase. The model converges
to predict the “blank” class for every case. The “blank” class
represents silences, transition movements and out-of-vocabulary
classes. Our reasoning is that the model is too difficult to train for
this already challenging task. When we take a step back and use
a many-to-one configuration with a network without recurrence,
the model is able to train properly. One additional advantage of a
many-to-one configuration is that we have better control over the
“blank” labels: we can choose how much a “blank” class is seen
during training. It is more difficult to do this in the many-to-many
configuration, because the signs are mostly surrounded by the
“blank” class.

Both networks start with a three dimensional convolutional
layer with filter size 7x7x7 and stride 1x2x2. This first layer allows
us to use a higher spatial resolution (128x128) without increasing
computation time. Replacing this layer with residual blocks would
force us to use a small mini-batch size due to memory constraints

124 5 Sign language recognition in video corpora

 7x7x7, 16, /1x2x2

Res-Block, 32, /1x2x2

Res-Block, 32

Res-Block, 64, /1x2x2

Res-Block, 64

Res-Block, 128, /2

Res-Block, 128

Res-Block, 128, /2

Res-Block, 128

3D Average

Dropout

Softmax

Figure 5.14: The deep residual neural network used for
sign language recognition on the Corpus NGT (Crasborn
et al., 2008; Crasborn and Zwitserlood, 2008) and the
Corpus VGT (Van Herreweghe et al., 2015). The / symbol
is followed by the size of the convolution strides.

and the computation time would increase twofold or more.
The first layer is followed by eight residual blocks, where we

decrease the feature map dimensionality every odd layer. This
results in seventeen convolutional layers in total. After the residual
blocks, we take the average of every feature map. In the many-to-
many case we only take the spatial average.

The sign language recognition network ends with a dropout
layer and a softmax layer. The gesture recognition network adds
a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) (with

5.3 Continuous sign language recognition 125

 7x7x7, 16, /1x2x2

Res-Block, 32, /1x2x2

Res-Block, 32

Res-Block, 48, /1x2x2

Res-Block, 48

Res-Block, 64, /1x2x2

Res-Block, 64

Res-Block, 80, /1x2x2

Res-Block, 80

2D Average

Dropout

Softmax

BLSTM, 96

Dropout

Figure 5.15: The deep residual neural network used for
gesture recognition on ChaLearn ConGD (Wan et al.,
2016).

peephole connections (Gers et al., 2003)), which enables us to
process sequences in both temporal directions.

Experimental setup
We train our models in an end-to-end fashion, backpropagating
through time (BTT) for the recurrent architecture. The network
parameters are optimized by minimizing the cross-entropy loss

126 5 Sign language recognition in video corpora

function using mini-batch gradient descent with the Adam update
rule (as described in Section 2.5.2.3). All our models are trained
the same way with early stopping, a mini-batch size of 24, a
learning rate of 10−3 and an exponential learning rate decay.
Before training, we initialize the weights with a random orthogonal
initialization method (Saxe et al., 2013).

Data augmentation has a significant impact on generalization.
For all our trained models, we used the same augmentation pa-
rameters: [−32, 32] pixel translations, [−8, 8] rotation degrees,
[1

1.5 , 1.5] image scaling factors and random horizontal flips. From
each of these intervals, we sample a random value for each video
fragment and apply the transformations online using the CPU.

The input frames are preprocessed the same way as in the
previous section (see Section 5.2.1). Also, the data has the same
training-validation-test 70%-10%-20% split. Lastly, it is worth
mentioning that only the 100 most frequently occurring glosses
are considered. The silences, the out-of-vocabulary signs and the
transition movements are all assigned to an extra “blank” class.

Results

Corpus NGT

The frame-wise top-N accuracies of the test set for the Corpus
NGT are depicted in Figure 5.16. The model achieves a top-1,
top-3, top-5 and top-10 accuracy of 39.9%, 57.9%, 64.4% and
73.3% respectively for 100 signs. Compared to our results for
isolated sign language recognition, the performance has decreased
(Table 5.1). However, these results are not directly comparable
to each other, because the isolated setup and the continuous
setup are two different tasks rather than two different approaches
to the same problem. The continuous sign recognition task is
significantly harder, because the signs have no given beginning
and ending.

5.3 Continuous sign language recognition 127

Corpus Setup Top-1 Top-3 Top-5 Top-10

NGT Isolated 56.2% 75.7% 82.1% 88.8%
Continuous 39.9% 57.9% 64.4% 73.3%

VGT Isolated 39.3% 60.3% 69.9% 81.5%
Continuous 18.2% 32.3% 41.4% 55.7%

Table 5.1: An overview of the top-N classification accu-
racies using 100 different sign classes.

10 20 50 100
Total number of signs used

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Top-1 Top-3 Top-5 Top-10

Figure 5.16: Corpus NGT (Crasborn et al., 2008; Cras-
born and Zwitserlood, 2008) top-N accuracies, indicating
the probability of the correct answer being within the
model’s N best guesses.

To have a better insight into the model’s performance, we show
the confusion matrix in Figure 5.17. As is the case in Section 5.2.3
almost all classes get confused with frequently occurring ones. We
can clearly see that the model is under-performing, especially for
less frequent glosses. However, the diagonal is visible, indicating
that the model has learned to recognize some patterns. The
diagonal is generally more visible at the top, because these classes

128 5 Sign language recognition in video corpora

0 20 40 60 80
Predicted class index, ordered by frequency

0

20

40

60

80

Ta
rg

et
 c

la
ss

 in
de

x,
 o

rd
er

ed
 b

y
fre

qu
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.17: Corpus NGT (Crasborn et al., 2008; Cras-
born and Zwitserlood, 2008) confusion matrix indicating
the classification performance of the deep neural network.

have more samples and occur more frequently.

Corpus VGT

To cope with the smaller amount of annotations for the Corpus
VGT compared to the Corpus NGT, we transfer all the parameters
from the Corpus NGT model and use them as initial weights. This
is also called transfer learning or pretraining.

In Figure 5.18, the top-N accuracies are shown. The model
achieves a top-1, top-3, top-5 and top-10 accuracy of 18.2%, 32.3%,
41.4% and 55.7% respectively for 100 signs. The transition from
isolated to continuous is more difficult compared to the Corpus

5.3 Continuous sign language recognition 129

10 20 50 100
Total number of signs used

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Top-1 Top-3 Top-5 Top-10

Figure 5.18: Corpus VGT (Van Herreweghe et al., 2015)
top-N accuracies, indicating the probability of the correct
answer being within the model’s N best guesses.

NGT (see Table 5.1). The top-10 accuracy decreased by 31.7%
while the decrease for the Corpus NGT is 17.4%. A possible
explanation would be the smaller amount of annotations. The
resulting confusion matrix is shown in Figure 5.19. The confusions
are more spread out compared to the confusion matrix of the
Corpus NGT. This is due to the class imbalance that is more
prevalent in the Corpus NGT.

ChaLearn LAP ConGD

The ChaLearn challenge is approached in a similar fashion as
SLR. We only consider the RGB channels and discard the depth
map, as we want to contribute by using a model that does not
need a depth sensor, although we realize we throw away a lot of
useful information. The difference with the SLR is that the model
takes an input of 32 frames, sampled at 10 frames per second.
Furthermore, the network has a many-to-many configuration
(Figure 5.15) with a bidirectional LSTM stacked on top of the

130 5 Sign language recognition in video corpora

0 20 40 60 80
Predicted class index, ordered by frequency

0

20

40

60

80

Ta
rg

et
 c

la
ss

 in
de

x,
 o

rd
er

ed
 b

y
fre

qu
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.19: Corpus VGT (Van Herreweghe et al., 2015)
confusion matrix indicating the classification performance
of the deep neural network.

residual network.
Lastly, a postprocessing modus-filter of size 39 is applied on

the final frame-wise predictions. The modus of a series of integers
is the most frequently occurring one. This smooths out the noisy
predictions of the model. This method is based on the fact that
annotations do not change more than once over a time-window of
about 20 frames.

We follow the ChaLearn LAP 2017 Challenge score to measure
the performance of our model. The score is based on the Jaccard
index as described in Section 4.4.3. However, there is a slight
change in the formula. To obtain the final score, the mean Jaccard

5.4 Conclusion and future work 131

index among all categories and sequences is computed as follows:

Jmean = 1
N

N∑
n=1

S∑
s=1

Js,n

ls
, (5.1)

where N = 249 is the number of categories, S the number of
sequences in the current set and ls the number of gestures in
sequence s.

Our model achieves a mean Jaccard index of 0.3164 on the test
set. The comparison with other teams can be found in Table 5.2.
The model is able to surpass all methods used in the first round
without using depth information. The winning team ICT_NHCI
(Liu et al., 2017) uses a hand-detector to produce a region of
interest. They use the prior knowledge that a gesture begins
when the hand is raised and the gesture ends when the hand
is lowered. Next, they extract features with a 3D CNN from
the RGB and depth channels separately and fuse the features
afterwards. Finally, they classify the features with a support
vector machine (SVM).

The confusion matrix of the model is depicted in Figure 5.20.
Looking at the diagonal, we can see that there are quite a few
light points as well as dark points, with most dark points on the
diagonal. This suggests that there are similar gestures which are
difficult to distinguish from one another, as well as classes with
good accuracy.

Conclusion and future work

We showed in this chapter that CNNs and deep residual networks
are capable of learning patterns in gesture and sign language
videos with virtually no preprocessing and with the use of standard
RGB cameras. Our models were evaluated on two different sign
language corpora and the largest known gesture dataset.

Round
2
(2017)

(Jun
etal.,2017)

R
ank

T
eam

M
JI

M
JI

T
est

M
ethod

1
IC

T
_
N
H
C
I(Liu

et
al.,2017)

0.6103
Faster

R
-C

N
N

+
SV

M
,RG

B-D
2

A
M
R
L
(W

ang
et

al.,2017)
0.5950

3D
C
N
N

+
LST

M
,RG

B-D
3

PaFiFA
(C

am
goz

et
al.,2017a)

0.3744
3D

C
N
N

+
alignm

ent,RG
B-D

4
O
urs

(RG
B)

(Pigou
et

al.,2017)
0.3164

3D
R
esN

et
+

LST
M
,RG

B

Round
1
(2016)

(Escalante
etal.,2016)

R
ank

T
eam

M
JI

M
ethod

1
IC

T
_
N
H
C
I(C

haiet
al.,2016)

0.2869
appearance

m
odel+

R
N
N
,RG

B-D
2

TA
R
D
IS

(C
am

goz
et

al.,2016)
0.2692

C
3D

+
sliding

w
indow

,RG
B-D

3
A
M
R
L
(W

ang
et

al.,2016)
0.2655

Q
O
M
+
C
N
N
,depth

only
-

Baseline(W
an

et
al.,2016)

0.1464
M
FSK

,RG
B-D

Table
5.2:

ChaLearn
LAP

ConGD
Challenge

Round
1
(Escalante

et
al.,2016)

and
2
(Jun

et
al.,2017)

finalresults.
M
JI:M

ean
Jaccard

Index.

5.4 Conclusion and future work 133

0 50 100 150 200
Predicted class index

0

50

100

150

200

Ta
rg

et
 c

la
ss

 in
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.20: ChaLearn ConGD (Wan et al., 2016) con-
fusion matrix indicating the classification performance of
the deep neural network.

For isolated signs, our models achieve an accuracy of 39.3%
with the Corpus VGT and 56.2% with the Corpus NGT for the
100 most common signs. We also show that the knowledge learned
from the Corpus NGT can be passed on to boost the performance
of the Corpus VGT.

Continuous SLR is significantly more challenging. We observe
a top-10 frame-wise accuracy of 73.3% with the Corpus NGT
(Crasborn et al., 2008; Crasborn and Zwitserlood, 2008) and
55.7% with the Corpus VGT (Van Herreweghe et al., 2015). We
achieved a mean Jaccard index of 0.3164 with the ChaLearn LAP
ConGD Challenge (Wan et al., 2016).

134 5 Sign language recognition in video corpora

Given the high dimensionality of video, the fact that these
corpora are not tailored for machine learning and the fast and
subtle movements of Deaf signers, deep neural networks show
potential to build upon for SLR.

However, the results have a lot of room for improvement.
We suspect a big increase in performance when using depth sen-
sors. The disadvantage is that a lot of datasets or applications
don’t have depth maps available. Another accuracy boost would
be gained from unsupervised feature learning and/or pretrained
weights from large image datasets. Also, improvements would be
gained from the integration of a hand and arm tracking method.
A last suggested addition would be to employ a language model
in the SLR case, as nearby predicted glosses are often related.

6
Sing language recognition

in TV news broadcasts

Many TV broadcasting organizations like the BBC (British Broad-
casting Corporation) or the VRT (Flemish Radio and Television
Broadcasting Organization) are making their news broadcasts
accessible to deaf people by overlaying an interpreter to the screen.
This means that there is a huge amount of data available where
spoken language is translated to sign language. Every day there is
about twenty to sixty minutes of video collected for every broad-
caster doing this. This vast amount of data presents itself as a
challenging and unique machine translation or video captioning
problem where the video stream is the source and the subtitles
are the targets.

Up until now we approached sign language recognition as a
sequence of individual gestures and signs that are transcribed
separately into identified glosses. Transcribing this to written
language would require additional steps, because going from a
sequence of glosses to a sentence is not trivial. This is because
there aren’t many examples available in which glosses are con-
verted to sentences. Also, sign language and written language
have no one-to-one mapping on word level. There is, however,
a mapping of meaning. The meaning of a short sign language
sequence can be mapped to the meaning of a word, a group of
words or a sentence. We use this view of the problem to create
our models.

136 6 Sing language recognition in TV news broadcasts

The subtitles of the broadcasts are either captioned by an
employee of the broadcasting company or can be automatically
transcribed with speech recognition software. Subtitles are always
accurately synchronized with the speech audio. The sign language
interpreter, however, is not completely synchronized. There is a
highly variable delay of a few seconds. This lack of synchronization
causes the video to not be aligned with the subtitles and makes
the task significantly more difficult.

Now we have two challenges: the alignment of subtitles to
the interpreter and the translation of sign language to written
language. To align subtitles, one needs to know sign language
and to translate videos one needs to align subtitles. This seems
impossible at first sight, but there are similar problems in other
fields that have been successfully solved with joint detection
and classification models. For example, jointly detecting and
classifying objects in images (Sermanet et al., 2013) or jointly
learning to align and translate in neural machine translation
(Bahdanau et al., 2015).

In this chapter, we build a model that tries to align subtitle
words with sign language video fragments by embedding the
fragment representation into an existing language model. By
trying to align, the model will have to learn to recognize sign
language. To accomplish this, we look at machine translation. We
make use of the family of encoder-decoders to learn a shared vector
space for both, video fragments and words (Legrand et al., 2016).
We allow the model to automatically (soft-)search (Bahdanau
et al., 2015) for the word(s) in the target subtitle. As we don’t
have example alignments, the model employs an unsupervised
objective, the ranking loss. This means that the model is trained
to score high when the target words are in the subtitle and to
score low when a random subtitle is chosen.

6.1 VRT news dataset 137

VRT news dataset

We collected a large amount of news videos with sign language
interpreter overlays in collaboration with VRT. The videos are
spanning from September 2012 to July 2015 and contain the daily
news broadcast of 7 PM. Collecting of the data was a challenge
in and of itself. We built three different web crawlers that collect
data from three different databases and platforms. The first
web crawler acquires the video footage. The second web crawler
acquires the subtitles. The video files and the subtitles files don’t
have matching names, that is why a third web crawler collects
metadata that links both together.

We end up with 947 video files (415GB), 891 of which are
usable broadcast-subtitles matches after filtering and cleaning out
the data. The average duration of each broadcast is about forty
minutes and in total there are 575 hours of usable and subtitled
footage. The resolution of each video file is 352 by 288 pixels and
the frame rate is 25 frames per second (fps). The low resolution is
due to the fact that these videos are used for digital web previews.
The original files are hard to come by and have a file size of about
4GB per broadcast.

The interpreter overlay is mixed analogically with the back-
ground news broadcast. This means that the overlay is not
available separately from the original video. In the span of about
three years, the static background style changed once and there
are four different interpreters, as depicted in Figure 6.1.

138 6 Sing language recognition in TV news broadcasts

Figure 6.1: The VRT news sign language dataset is
overlayed with four different interpreters and has two
different static backgrounds.

Methodology

A shared vector space
The goal is to capture the semantic meaning of a short video
fragment. We can achieve this by encoding the source video
frames into a vector with a convolutional neural network (CNN).
In the ideal case, a second fragment with a similar semantic
meaning should produce a vector close to the first one. This is
called an embedding, where we embed source video fragments into
a semantic vector space.

The semantic vector space that we seek can be found in prior
work on learning good vector representations for words and phrases

6.2 Methodology 139

(Mikolov et al., 2013; Kiros et al., 2015). There is a large amount
of written language available. Using this data to model language
results in powerful tools that can encode words or groups of
words into fixed-size vectors like Word2Vec (Mikolov et al., 2013)
or fastText (Bojanowski et al., 2016; Joulin et al., 2016). To
illustrate how this works, we can for example do linear trans-
lations: vec(“king”) - vec(“man”) + vec(“women”) is closest to
vec(“queen”) than any other word.

We use the same existing vector space to embed the source
sign language into. This way, a fragment where “women” is
signed, ideally gets encoded by the CNN to a vector closest
to vec(“women”). A rough translation would be performed by
encoding the sign language fragment to the embedding vector and
search for the closest words in the vector space.

As we don’t have an alignment of the source video and the
target words (subtitles), we can’t approach our problem as a
frame by frame classification task from the previous chapters.
What we do have is a rough estimate of the timing, off by a few
seconds. This is why we can give subtitle words surrounding the
time-stamp of the source fragment and be confident that one or
more of the words match the sign language in the video.

Illustrated in Figure 6.2, the model embeds the source frames
X and the target words wi into the shared demb-dimensional
vector space, where demb is determined by the vector length of
the used word representation. The embedding is performed with
a CNN at the source and with Word2Vec for the targets. To find
a matching score si between the source X and every target word
wi, the dot-product is used in the embedding vector space:

si = net(X) ·wi. (6.1)

We calculate the matching score si for every target word wi in the
subtitles that are close enough in time to the source sign language
fragment X. We should then see which words have high scores.

140 6 Sing language recognition in TV news broadcasts

net

demb

Source frames:

dot
product

...

demb

w0
w1

wn

Target words:

n

Matching score:
s

Figure 6.2: An overview of how the source is embedded
into the existing Word2Vec space. The model embeds
the source frames into the shared demb-dimensional vector
space. To find a matching score si between the source
and every target word wi, the dot-product is used.

Knowing which words match the source makes the alignment an
easier task.

Ranking-based objective
In our case, defining a supervised loss function for backpropagation
is not applicable, because we don’t have the correct alignment.
Therefore, we can’t directly maximize the matching scores s. That
is why we have to define an unsupervised objective.

The objective that we employ is called ranking and an overview
of how this works in our context is depicted in Figure 6.3. Con-
sider a positive target W+ and a negative target W−, where
W = (w1, . . . ,wn) is an ordered sequence of subtitle words.
The positive target consists of words that match the source sign
language. The negative target consists of a random (existing)
sequence of words. Therefore, the probability is high that the

6.2 Methodology 141

Negative target

Source frames:

Video
representation

DANK AAN CARLOS BACCA GOED VOOR
TWEE GOALS EN ASSIST SEVILLA WINT
VOOR VIERDE KEER IN TIEN JAAR TIJD
EUROPA LEAGUE SPANJAARDEN ZIJN ZO
ABSOLUTE <UNK> WAT BETREFT ...

Positive target

Language
representation

TWEE STEDEN AAN KUST <UNK> EN
<UNK> DEL <UNK> NOODTOESTAND IS ER
UITGEROEPEN EN 7000 MENSEN HEBBEN
VOOR ALLE ZEKERHEID HUN HUIS
VERLATEN VROUW IS OM ...

Language
representation

Maximize
similarity

Minimize
similarity

Figure 6.3: The ranking objective aims at maximizing
the similarity between the video representation and the
language representation (positive target) while minimizing
the similarity of a random subtitle representation (negative
target).

negative target doesn’t match the source. Consequently, we want
to maximize the similarity s+

aggr between the source representation
and the positive target and minimize the similarity s−aggr with the
negative target. To achieve this, we train our model to minimize
the margin loss, given the source X, the positive target W+ and
the negative target W−:

L(X,W+,W−) = max(0, 1− s+
aggr + s−aggr). (6.2)

The similarity measure is an aggregation of the matching scores
s. We choose to use LogMeanExp (LME), which is a smooth

142 6 Sing language recognition in TV news broadcasts

approximation version to the maximum operation. We define the
similarity between source and target as follows:

saggr = 1
r

log
(

n∑
i=1

ersi

)
, (6.3)

where the higher r is chosen, the closer the result is to the maxi-
mum element of s.

By using this ranking objective, we train the model to score
low on random subtitles, because the (soft-)maximum matching
score s−aggr of the words is minimized. On the other hand when
the correct subtitle is presented, one matching word is sufficient
to get the highest aggregated similarity s+

aggr. This, however, is
not ideal in the case where the signs in the video fragment is very
common, because the negative target will have a higher chance of
containing that word as well. This can easily be solved by having
a better policy for choosing a negative target. Therefore, we make
sure that word collisions between the negative and positive target
are avoided.

Experiments

Data processing
Before we start building models we need to clean and preprocess
the data, because the raw VRT video footage and the audio
subtitles are not made to be fed into neural networks.

We are only interested in the sign language of the interpreter.
The interpreter always stands stationary in the bottom right
position of the screen (Figure 6.1). That is why we can crop
out most of the video without worrying about losing information.
Furthermore, we want to avoid that the model overfits on the
background. We tried subtracting the background with various

6.3 Experiments 143

computer vision software, but the results were not promising. The
problem is that what we consider as background can easily be
recognized as foreground and the lower resolution of the videos
cause the hands to be subtracted too often. We settle with a static
crop of the bottom right resulting in images with a resolution of
174 pixels wide by 244 tall. Next, the RGB channels are converted
to gray-scale and finally the previous frame is subtracted from
the current frame to remove static information.

When looking into subtitle timings, we notice that some of
them aren’t synchronized to the video. This is because the subti-
tles have absolute timestamps and the videos don’t always start
at exactly 19:00:00. For example, the video starts at 18:59:55, but
we don’t have that information. That is why we visually check
each beginning of the video and store the delay if there is any.
In total, there are 263 video files with delayed starts (positive or
negative delays). Another problem is that the quality and timing
of the subtitles of live segments are unusable. Fortunately, the
live segments are tagged in the subtitle files and we can remove
them.

We use a pretrained Word2Vec model that is trained with the
Dutch Wikipedia database (De Boom, 2016). The model provides
100-dimensional embeddings (demb = 100) for 840 thousand Dutch
words. For every out-of-vocabulary word, we try to split the word
into compounds or if the word is a digital number we convert the
number to text. In all other cases, we omit the entire subtitle line.
To alleviate the difficulty of the learning task, we filter some words
that have no meaning in sign language and words that are very
rare. Articles like de (Eng: the), het (Eng: the/it) or een (Eng:
a) are removed, - is replaced by a space, symbols are removed and
special characters with accents are replaced by regular characters.
A list of all the words that are omitted can be found in Appendix
B. After this process we end up with 3, 010, 575 usable subtitle
words.

The 891 video data files are split randomly into 691 training

144 6 Sing language recognition in TV news broadcasts

5x
5x

5,
 3

2,
 /2

5x
5x

5,
 6

4

/2
x2

x2

5x
5x

5,
 1

28

/2
x2

x2

5x
5x

5,
 2

56

/4
x2

x2

1x
5x

5,
 5

12

/1
x3

x3

20
48

20
48

10
0

Convolutions Max pool Dense
32x176x224

Figure 6.4: The architecture of the 3D convolutional
neural network used to encode a video fragment into a
100-dimensional embedding.

files, 100 validation files and 100 test files. Note that we don’t
pay attention to user independence, i.e. the different interpreters
occur in both the development and the test sets.

Model architecture and training details
As mentioned before, we use a CNN to encode the source video
fragment X to the fixed vector net(X) with length demb = 100.
The architecture of the model is shown in Figure 6.4. As input,
we feed the network with 32 frames sampled at 12.5 frames per
second, which is about two and a half seconds. In a single frag-
ment, the interpreter performs about two to five signs. The first
convolutional layer has a stride of 2 across all dimensions. Using a
stride of 2 instead of a stride of 1 followed by max pooling in the
first layer results in a significant boost in inference speed. Further-
more, using filter sizes of 5 instead of stacking convolutional layers
with filter size 3 was necessary to keep the training time and the
memory use in check. As is the case in the previous chapter, we
use batch normalization and Exponential Linear Units (ELUs).
To train the model, we employ the Adam update rule as described
in Section 2.5.2.3. We use a mini-batch size of 16 and the weights
are initialized as orthogonal matrices (Saxe et al., 2013).

6.3 Experiments 145

Each sample has a positive and a negative target. The positive
target consists of 32 subtitle words that are closest to the time-
stamp of the sampled source fragment. However, a delay is
subtracted to this time-stamp, because the interpreter signs are
always later than the audio. By visually taking some samples,
we determine an average delay of 4 seconds. The correctness
of this delay parameter is not important if we consider enough
surrounding words. The negative target consists of 32 subtitle
words from a randomly chosen different source video.

Results
After processing the data as described in Section 6.3.1 and train-
ing the model as described in Section 6.3.2, we observe the first
promising results. There were many failed attempts prior to this.
The first approaches tried to learn both the language representa-
tion and the video representation at the same time. This means
that we didn’t try to embed the source into an existing vector
space, but that this space would be learned instead. The results
were not promising and we decided to use a pretrained Word2Vec
model. However, this new approach also didn’t converge using the
many model configurations we tried. It wasn’t until we removed
more written language words and pushed the number of parame-
ters in the network up to the maximum we could achieve without
running out of memory that we saw something was happening.

The margin loss during the training phase is depicted in Figure
6.5. Note that we tried models with more parameters resulting in
more prominent overfitting, but the validation score was worse.
We train the models for 91 thousand gradient descent updates.
This means that the network has seen 1.5 million (non-unique)
samples. The training phase took about 100 hours per model on a
NVIDIA TITAN X 12GB graphics card with 83% GPU-utilization.
The 17% overhead was mostly due to the CPU decompression of
the stored video frames. The margin loss converges to about 0.9

146 6 Sing language recognition in TV news broadcasts

0 20 40 60 80 100 120 140

Iteration

0.90

0.92

0.94

0.96

0.98

1.00

M
ar

gi
n

lo
ss

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

u
ra

cyTraining loss

Validation loss

s+
aggr > s−aggr

Figure 6.5: The margin loss and the s+
aggr > s−aggr accu-

racy over time during the training phase. Note that one
iteration consists of 640 updates, but does not cover a full
pass through the dataset.

and is 0.908 on the test set. The loss is still very high, this means
that the difference between the negative and positive targets is
too low. We have to keep in mind that the negative target consists
of 32 words and if only one of the words is relatively close to the
true target, the similarity will be higher.

To gain more insight into the ranking objective, we output the
accuracy as the fraction of samples for which the positive target
has a greater similarity to the source fragment than to the negative
one. In other words, we investigate the rate that s+

aggr > s−aggr is
true. As shown in Figure 6.5, the accuracy converges to a rate of
about 0.74. This gives us an indication that the model is learning
to rank the group of 32 words that match the fragments and the
one that doesn’t.

The margin loss and the s+
aggr > s−aggr accuracy do not give us

much intuition of what the model actually learned and whether
it has learned what we wanted it to learn in the first place. To
perform a better qualitative analysis, we evaluate the model by
looking at (i) the video fragments with (ii) the corresponding sub-

6.3 Experiments 147

titles words, (iii) the neighboring words of the learned embedding
and (iv) the true sign language glosses. Beatrijs Wille and prof.
dr. Mieke Van Herreweghe (UGent Department of Linguistics)
annotated about 40 minutes of accurate gloss annotations for this
purpose. A number of cherry picked examples can be found in
Table 6.1.

1. Target: zes arbeiders verdronken waren hulpdiensten snel ter
plaatse waren twee wagens eerste wagen ging rechtdoor tweede kun-
nen stoppen daardoor kon men snel reageren verwittigen iemand
water gehaald kunnen heeft overleefd politiediensten brandweer

Neighbors: hulpstoffen anestheticum probiotica eindgebruiker an-
tibacteriele agonisten betablokkers opioide glucosamine lidocaine

Gloss: AMBULANCE WG-A NOG

2. Target: noodzakelijke hervorming kunnen doen vlaamse
regering geen compromis kan bereiken zou zwaar gezichtsverlies
haar betekenen ramp hele onderwijs ik hoop redelijk compromis
ik weet altijd zo wet democratie komt daar buiten boerenpaard

Neighbors: ik je jouw zanaq jij filter mijn quistnix mezelf jullie

Gloss: IK HOPEN COMPROMIS MOETEN

3. Target: we eens gaan kijken kinrooi limburg daar school
brede eerste graad heeft voorbeeld plannen regering momenteel
bespreekt midden blokje trekken we lijn teken je hier techniek
latijn aso tot tso bso eerstegraads

Neighbors: milities regering staatsgreep overgangsregering plo
rebellen gazastrook jordaanoever bevrijdingsleger vicepremier

Gloss: REGERING

Table 6.1: Continued on the next page.

148 6 Sing language recognition in TV news broadcasts

... continued from previous page

4. Target: we werken nu vooral naar drugsgebruikers toe we
bieden hen therapie we gaan blijven doen we gaan gelijktijdig
ook boete opleggen eind januari zou snelrecht systeem tegen
drugsgebruikers kracht moeten zelfs gaat

Neighbors: witwassen toezichthouder veiligheidsdienst justi-
tie rechtbank afpersing liquidatie wapenhandel gedetineerden
drugshandel

Gloss: MOMENT OOK BOETE OPLEGGEN VERPLICHTEN

5. Target: procent vlees besmet je ziet ook geen onderscheid
tussen biologisch scharrel vlees regulier vlees zit overal esbl
ook land herkomst niet relevant we hebben verschillende landen
herkomst onderzocht eigenlijk overal esbl besmetting

Neighbors: biotechnologie voedselveiligheid consumenten
derivaten toxicologie geneesmiddelen voedings informatietechnolo-
gie telecommunicatie novartis

Gloss: VLEES OVERAL IN OOK

6. Target: onder verbod we blijven even turkije daar heeft syrische
oppositie ballingschap alle gewapende rebellen syrie opgeroepen
handen rebellen vorig weekend heeft regeringsleger offensief ingezet
stad heroveren regeringsleger zou daarbij steun krijgen hezbollah

Neighbors: wadi kordofan tigris saurashtra edirne daraa sinop
matruh zagora erzincan

Gloss: REBELLEN INNEMEN VORIG WEEKEND

Table 6.1: Continued from previous page. A list of
cherry picked samples from the test set. The Target is
the group of 32 subtitle words surrounding the fragment.
The Neighbors are a top-10 of the most similar words in
the Word2Vec space. The Gloss is a list of signs that are
performed in the fragment.

6.3 Experiments 149

We notice that the model is able predict the general theme of the
fragment in some cases. Note that the plausible results are not
limited to the ones that are in this table. We estimate a 25% rate
of fragments with results that make sense in terms of topic. In
some rare cases, the exact word is predicted, which is mostly ik
(Eng: me) as in sample 2 in Table 6.1.

Also, we notice that there are some key points in the vector
space that the embedding learned. For example, whenever the
topic is about the care sector (see sample 1 in Table 6.1), the
source gets encoded to roughly the same vector, because the
same neighboring words emerge every time. The most common
topic-words that we encounter are regering (Eng: government)
for anything related to politics, hulpstoffen (Eng: excipients) for
the care sector, justitie (Eng: justice) for justice, massasprint
(Eng: mass sprint) for cycling and doelman (Eng: goalkeeper) for
soccer.

A final observation is that in some cases, the top-10 neighbor-
ing words are a list of names or places. In fragment 6 in Table 6.1
the sign of REBELLEN (Eng: rebels) spawns the names of places
which are mostly in the Middle East. Also, in some fragments
about cycling, a list of famous cyclists are the most similar words.

We verify that the model doesn’t overfit on the small patch in
the background where the original news broadcast is still shown
(e.g., by detecting a part of a bicycle). We visually couldn’t see
any correlation just by looking at the fragment videos where the
neighboring words of the predicted vector are in topic. In most
cases, it wasn’t possible to guess the correct topic by looking
solely at this patch. In a few cases, however, we could see the
green field of a soccer match or the wheel of a cyclist.

150 6 Sing language recognition in TV news broadcasts

Conclusion

We collected a large amount of news videos with sign language
interpreter overlays and audio subtitles in collaboration with the
broadcasting company VRT. Using a deep neural network, we
built a model that embeds small video fragments into an estab-
lished vector representation of words: a Word2Vec language model
pretrained on the Dutch Wikipedia. As exact gloss annotations
are not available, an unsupervised ranking objective is employed
to train the model.

The audio subtitles are not aligned to the interpreter and
spoken language is very different from sign language. Nevertheless,
the model is able to learn some patterns at least. Namely, it
can predict whether subtitles match a fragment with about 74%
accuracy. Furthermore, by looking at the most similar words in
the Word2Vec space, we observe that the correct topic is learned
in about 25% of the cases.

The results overall are far from transcription quality and a
translation from sign language to spoken or written language is
not yet applicable. A future improvement to the current model
could be the tracking of the hands to increase the signal to noise
ratio. A second improvement would be the usage of a pretrained
language model that encodes groups of words or sentences instead
of using a Word2Vec model. Also, finding a way to use sign
language corpora in the training procedure would potentially
increase the performance. A last suggestion for future work would
be to see what happens when one could build bigger models with
more available memory and more regularization if needed. Note
that these suggestions are not guaranteed to improve results. We
found this research to be high risk and our observations were not
promising up until the very last experiments we tried.

7
Conclusions and future

perspectives

This chapter provides a summary of the research conclusions in
Section 7.1 and reviews possible directions for future research and
applications in Section 7.2.

Summary

This thesis investigated the use of deep neural networks in gesture
recognition and sign language recognition (SLR). We started with
building networks that classify gestures in videos that are few in
numbers and are relatively easy to distinguish from each other.
The promising results led us to study the use of these methods for
SLR in video corpora and TV news broadcasts. The increase in
difficulty from gesture recognition to SLR was clear from the start.
Therefore, we first experimented with isolated sign classification
before tackling continuous recognition. We can conclude that
SLR remains a challenging and unsolved research field with many
open questions. Nonetheless, the rise of deep learning provides a
good answer for many questions in the gesture recognition field
and has helped the SLR field make steps forward.

152 7 Conclusions and future perspectives

Gesture recognition with HMMs and 3D CNNs

The ChaLearn Montalbano gesture recognition dataset is a large
collection of videos consisting of 20 different classes of Italian
gestures recorded with a depth-sensing camera. The challenge
is to classify every gesture and to locate the gestures in time
(temporal segmentation).

Inspired by successful approaches in the speech recognition
research field, we propose a data-driven model for this gesture
recognition problem. The segmentation and the recognition of
a continuous stream of gestures are performed in parallel. This
is achieved by integrating deep neural networks within a hidden
Markov model (HMM). A HMM is a statistical model that is
employed, in this case, to model different temporal states of each
gesture.

The depth-sensing camera allows the positional tracking of
skeletal joints. Therefore, a Gaussian-Bernoulli deep belief net-
work (DBN) is presented to extract high-level skeletal joint fea-
tures. The video fragments, including the depth images are
processed with a convolutional neural network (3D CNN). Both
the skeletal features and the video features are fused together to
finally feed them to the HMM. Finally, different fusion strategies
are investigated.

Gesture recognition with temporal convolutions
and recurrence

A drawback to the previous method is that the different modules
(HMM, 3D CNN and DBN) act independently from each other
and need to be trained and evaluated in multiple stages. In
this chapter, we unify the modules and stages with an end-to-
end deep neural network, backed by the many recent successes
in the deep learning field. A significant increase in accuracy
is observed with the ChaLearn Montalbano gesture recognition

7.1 Summary 153

dataset. Furthermore, the training and the evaluation of the
models are made easier and faster.

Previous research suggests using a simple temporal feature
pooling strategy to take into account the temporal aspect of video.
We demonstrate that this method is not sufficient for gesture
recognition, where temporal information is more discriminative
compared to general video classification tasks. We explore different
deep architectures and propose a new end-to-end trainable neural
network architecture incorporating temporal convolutions and
bidirectional recurrence. Our main contributions are twofold;
first, we show that recurrence is crucial for this task; second,
we show that adding temporal convolutions leads to significant
improvements.

Sign language recognition in video corpora

The previous two chapters show that deep neural networks have
great potential for gesture recognition. This gives us an indication
that deep networks could be useful for more complex tasks in the
field. That is why we take it a step further in this chapter by in-
vestigating sign language recognition. The problem is approached
by classifying gestures and signs from sign language corpora: large
collections of sign language video material. The corpora we evalu-
ate our models on are the Flemish Sign Language Corpus (Corpus
VGT), the Dutch Sign Language Corpus (Corpus NGT) and the
ChaLearn LAP RGB-D Continuous Gesture Dataset (ConGD).

Two different setups are analyzed in this chapter. The first
setup considers the classification of isolated signs. Each annotated
sign in the corpora is cut into a video fragment on which we build a
classification model: a convolutional neural network. Furthermore,
we show a method to cope with the fewer Corpus VGT annotations
by transferring the learned features of the larger Corpus NGT. In
the second setup, we research continuous sign language recognition
using 3D residual networks and other recent breakthroughs in

154 7 Conclusions and future perspectives

deep learning. We approach the problem as a frame by frame
classification task, in which the temporal locations of the gestures
and the signs are not given during evaluation.

Sign language recognition in TV news broadcasts

Many TV broadcasting organizations like the BBC (British Broad-
casting Corporation) or the VRT (Flemish Radio and Television
Broadcasting Organization) are making their news broadcasts
accessible to deaf people by overlaying an interpreter to the screen.
This means that there is a huge amount of data available where
spoken language is translated to sign language. This vast amount
of data presents itself as a challenging and unique machine trans-
lation or video captioning problem where the video stream is the
source and the subtitles are the targets.

Up until now we approached sign language recognition as a se-
quence of individual gestures/signs that are transcribed separately.
However, sign language and written language have no one-to-one
mapping on word level. There is, however, a mapping of meaning.
The meaning of a short sign language sequence can be mapped to
the meaning of a word, a group of words or a sentence. We use
this view of the problem to create our models.

We build a model that tries to embed small fragments of
Flemish TV news sign language video into an established vec-
tor representation of words: Word2Vec trained on the Dutch
Wikipedia.

Future directions

Future research perspectives
Most of the research in this thesis considers the use of end-to-end
models without many preprocessing steps and without requiring

7.2 Future directions 155

a depth sensor. “End-to-end” means that the network models are
trained and evaluated without intermediate steps and with mini-
mal preprocessing of the input data. The inspiration comes from
the deep learning research in image classification and the speech
recognition field. For example, Graves and Jaitly (2014) show
that transcribing audio without intermediate phonetic representa-
tion (and thus end-to-end) outperforms everything else by a large
margin. However, this assumes that the task at hand has a large
labeled dataset available. These large amounts of annotations are
not always available in the SLR field yet. Furthermore, SLR is a
more challenging task than general image classification or speech
recognition. We showed that end-to-end models are at least able
to learn something, but extending the models with intermediate
interpretations would presumably increase performance.

One obvious extension is the integration of a hand and arm
detection/tracking module. Although sign language has non-
manual signals like facial expressions or shoulder movements,
most of the information is communicated through hand and arm
movements. Cropping the videos to the hands and fusing the
hand features with the position relative to the head would increase
the signal to noise ratio significantly. A promising tool for this
tracking module is OpenPose (Wei et al., 2016; Cao et al., 2017;
Simon et al., 2017), which detects body, hand and facial keypoints
in real-time with impressive accuracy and without requiring a
depth sensor. A second promising project is DensePose (Güler
et al., 2018) that aims at mapping human pixels of an RGB image
to a 3D surface of the human body.

Another potential research direction would be to build sign
language subunit classifiers (Koller et al., 2016a). Some sign lan-
guage corpora have annotations at the articulator level, or subunit
transcriptions. The most widespread system is HamNoSys (Ham-
burg Notation System for Sign Languages) (Hanke, 2004), which
is an alphabetic system describing signs on a mostly phonetic level.
These annotations describe the shape, the orientation and the

156 7 Conclusions and future perspectives

location of the hand, among other things. HamNoSys can be used
internationally and does not rely on language specific conventions.
This means that subunit classifiers can be trained across different
sign languages resulting in a larger pool of annotated data all
over the world. To translate sign language to glosses, one would
only need to learn a mapping of HamNoSys annotations to the
corresponding glosses.

Potential applications

Human-computer interaction

Microsoft, PointGrab, eyeSight and SoftKinetic are some examples
of pioneers in the human-computer interaction industry. These
companies can benefit from the ongoing research in deep learning
for gesture recognition to build more robust tracking and recog-
nition applications that can handle noisy environments better.
This technology can be used in video games, as remote controls,
at noisy airfields or when scuba diving to name a few.

Annotation tool

This tool would enable a more automated way to annotate sign
language or gesture video datasets. The manual annotation of
a video corpus is a very costly and time consuming task. The
tool would, for example, automatically localize signs in a video
sequence and suggest a top-5 of the most probable translations.
Or let the system translate fully automatically for signs that are
recognized with a high certainty. This application is important
to stimulate the research on sign language. Also, the more data
is annotated, the better the models can be trained.

7.2 Future directions 157

Sign language dictionary

A dictionary that can translate a sign language to a written
language can be handy when one forgets the meaning of a sign or
if one discovers an unknown sign (on television or on the web).
As of writing, one has to search for a sign by describing it with
keywords, which is not straightforward. This could be made more
user friendly with a recognition system. The user would perform
the sign on camera (this could be a smartphone camera) to look
up the description of a sign.

Learning platform

This is an interactive (web) application that allows users to prac-
tice their sign language when and where they want. The learning
platform would demonstrate a sign, after which the user repeats
the same sign a number of times. The recognition system can
check whether the sign is performed correctly. The application re-
members which signs are already known by the user. The user can
practice their sign language by translating the displayed glosses
to sing language. The target audience for this application are
deaf people, their family, friends and colleagues and everyone who
is interested in learning a sign language.

Pocket interpreter

This can be an application for your smartphone or tablet that
makes use of the camera to translate a sign language to text.
Together with technology to convert text to speech, this appli-
cation could be used by the Deaf community. There are plenty
of daily situations in which an interpreter is not available and
written communication is too slow, cumbersome, unnatural or
impersonal.

A
Deep belief networks

To understand deep belief networks (DBNs), we first have to
discuss restricted Boltzmann machines (RBMs). RBMs are undi-
rected graphical models consisting of visible and hidden neurons.
The connections between the hidden and visible units are sym-
metric, but there are none between units within the same type.
The units thus form a bipartite graph (Figure A.1).

In most cases, the units in a RBM are binary. A pair consisting
of a visible unit f with its corresponding hidden unit h is called
a configuration. A configuration has an energy defined by:

E(f ,h|θ) = −
∑

i

aifi −
∑

j

bjhj −
∑

i

∑
j

fjWi,jhj (A.1)

where θ = {W ,a, b} are the free parameters. The variables

f1 f2 f3 f4

h1 h2 h3 Hidden units

Visible units

Figure A.1: A restricted Boltzmann machine with four
visible units and three hidden units.

160 A Deep belief networks

bi and aj specify the bias term of the visible and hidden units,
respectively.

This energy function is important, because the probability
distribution over the hidden and visible units are defined as follows:

P (f ,h) = e−E(f ,h)∑
u,g e−E(u,g) , (A.2)

P (f) =
∑
h e
−E(f ,h)∑

u,g e−E(u,g) . (A.3)

The RBM can be trained using gradient ascent, maximizing the
product of all visible unit probabilities: ∏f P (f).

The conditional distributions needed for inference and genera-
tive modeling are given by the logistic sigmoid g for the binary
units:

P (hj = 1|f) = g

(∑
i

Wijfi + bj

)
(A.4)

P (fi = 1|h) = g

∑
j

Wijhj + ai

 . (A.5)

In our case (Chapter 3) the visible units in the first layer
contain the vector of skeleton features f ∈ RNf , whose values
are continuous. To be able to process this data, we resort to a
Gaussian-Bernoulli RBM (GRBM) (Salakhutdinov, 2009). The
main difference w.r.t. a standard RBM lies in the following: the
energy term of the first layer f to the hidden binary stochastic
units h ∈ {0, 1}F is given by:

E(f ,h|θ) = −
∑

i

(fi − ai)2

2σ2
i

−
∑
j=1

bjhj −
∑

i

∑
j

Wijhj
fi

σi

(A.6)

where σi denotes the standard-deviations of the visible units.

A Deep belief networks 161

The conditional distributions are defined as:

P (hj = 1|f) = g(
∑

i

Wijfi + bj), (A.7)

P (fi|h) = N (f |µi, σ
2
i), (A.8)

µi = bi + σ2
i

∑
j

Wij, (A.9)

where the normal distribution N is employed for the continuous
units. In practice, we normalize the data (zero mean, unity
variance) in the preprocessing phase. Hence, instead of learning
σ2

i , one typically uses σ2
i = 1 during training.

A DBN is simply formed by stacking RBMs on top of each other
(Figure 3.6, right) and is considered one of the first competent
deep learning methods. The model can be trained greedily: one
layer at a time.

The approach for training the skeleton DBN model (Chapter
3), starting with variational learning to train stacked RBMs with
unlabeled data, followed by discriminative fine-tuning (Salakhut-
dinov, 2009) has been shown to have several advantages. It has
been observed that variational learning (Hinton et al., 2006),
which tries to optimize the data-likelihood while minimizing the
Kullback-Leibler divergence between the true posterior distribu-
tion of the hidden state (i.e. hidden layer variables of the RBMs
in our case) and an approximation of this distribution, tends to
produce unimodal distributions. This is beneficial, as this means
that similar sensory inputs will be mapped to similar hidden
variables.

B
List of omitted words in

subtitles

de, het, een, maar, op, in, van, is, ben, bent, zijn, was, waren,
geweest, zich, met, dus, namelijk, er, wel, dat, deze, dit, die,
aangezien, te, daarom, indien, zodat, omdat, als, terwijl, en, aan,
uit, om, nog, door, al, want, werd, worden, word, wordt, werden,
geworden, voor, dan, zal, zullen, zult, zou, zouden

Bibliography

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A.
(2011). Sequential Deep Learning for Human Action Recognition,
pages 29–39. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural ma-
chine translation by jointly learning to align and translate. In
International Conference on Learning Representations (ICLR).

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfel-
low, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012).
Theano: new features and speed improvements. In Deep Learn-
ing and Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations
and trends in Machine Learning, 2(1):1–127.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007).
Greedy layer-wise training of deep networks. Advances in neural
information processing systems, 19:153.

Bishop, C. M. et al. (2006). Pattern recognition and machine
learning, volume 1. Springer New York.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). En-
riching word vectors with subword information. arXiv preprint
arXiv:1607.04606.

166 Bibliography

Bourlard, H. and Morgan, N. (1994). Connectionist speech
recognition-a hybrid approach. Technical report, KLUWER
ACADEMIC PUBLISHERS.

Camgoz, N. C., Hadfield, S., and Bowden, R. (2017a). Particle
filter based probabilistic forced alignment for continuous gesture
recognition. In IEEE International Conference on Computer
Vision Workshops (ICCVW) 2017. IEEE.

Camgoz, N. C., Hadfield, S., Koller, O., and Bowden, R. (2016).
Using convolutional 3d neural networks for user-independent
continuous gesture recognition. In Pattern Recognition (ICPR),
2016 23rd International Conference on, pages 49–54. IEEE.

Camgoz, N. C., Hadfield, S., Koller, O., and Bowden, R. (2017b).
Subunets: End-to-end hand shape and continuous sign language
recognition. In IEEE International Conference on Computer
Vision (ICCV).

Camgöz, N. C., Kindiroglu, A. A., and Akarun, L. (2014). Ges-
ture recognition using template based random forest classifiers.
In Computer Vision-ECCV 2014 Workshops, pages 579–594.
Springer.

Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime
multi-person 2d pose estimation using part affinity fields. In
CVPR.

Chai, X., Li, G., Lin, Y., Xu, Z., Tang, Y., Chen, X., and Zhou, M.
(2013). Sign language recognition and translation with kinect.
In IEEE Conf. on AFGR.

Chai, X., Liu, Z., Yin, F., Liu, Z., and Chen, X. (2016). Two
streams recurrent neural networks for large-scale continuous
gesture recognition. In Pattern Recognition (ICPR), 2016 23rd
International Conference on, pages 31–36. IEEE.

Bibliography 167

Chang, J. Y. (2014). Nonparametric gesture labeling from multi-
modal data. In European Conference on Computer Vision and
Pattern Recognition Workshops, pages 503–517. Springer.

Charles, J., Pfister, T., Everingham, M., and Zisserman, A. (2013).
Automatic and efficient human pose estimation for sign language
videos. International Journal of Computer Vision, pages 1–21.

Chaudhry, R., Ofli, F., Kurillo, G., Bajcsy, R., and Vidal, R.
(2013). Bio-inspired dynamic 3d discriminative skeletal features
for human action recognition. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops.

Chen, G., Clarke, D., Giuliani, M., Gaschler, A., Wu, D., Weik-
ersdorfer, D., and Knoll, A. (2014). Multi-modality gesture
detection and recognition with un-supervision, randomization
and discrimination. In Computer Vision-ECCV 2014 Work-
shops, pages 608–622. Springer.

Cireşan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column
deep neural networks for image classification. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 3642–3649. IEEE.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast
and accurate deep network learning by exponential linear units
(elus). International Conference on Learning Representations
(ICLR).

Crasborn, O., Zwitserlood, I., and Ros, J. (2008). The
Corpus NGT. A digital open access corpus of movies and
annotations of Sign Language of the Netherlands. Cen-
tre for Language Studies, Radboud Universiteit Nijmegen.
http://www.ru.nl/corpusngtukgp/.

Crasborn, O. A. and Zwitserlood, I. (2008). The corpus ngt: an
online corpus for professionals and laymen. In Construction

168 Bibliography

and Exploitation of Sign Language Corpora. 3rd Workshop on
the Representation and Processing of Sign Languages (LREC),
pages 44–49. ELDA.

Cui, R., Liu, H., and Zhang, C. (2017). Recurrent convolutional
neural networks for continuous sign language recognition by
staged optimization. Conference on Computer Vision and
Pattern Recognition.

De Boom, C. (2016). Wikipedia word2vec models. http:
//cedricdeboom.github.io/blog/word2vec-models/. Ac-
cessed: 2016-11-17.

Dieleman, S., van den Oord, A., Korshunova, I., Burms, J., De-
grave, J., Pigou, L., and Buteneers, P. (2015). Classifying
plankton with deep neural networks. http://benanne.github.
io/2015/03/17/plankton.html. Accessed: 2015-03-17.

Dollár, P., Rabaud, V., Cottrell, G., and Belongie, S. (2005).
Behavior recognition via sparse spatio-temporal features. In
Visual Surveillance and Performance Evaluation of Tracking
and Surveillance. IEEE.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Saenko, K., and Darrell, T. (2015). Long-
term recurrent convolutional networks for visual recognition
and description. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2625–2634.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M. A., and Brox,
T. (2014). Discriminative unsupervised feature learning with
convolutional neural networks. CoRR.

Dreuw, P., Ney, H., Pérez, G. M., Crasborn, O., Piater, J. H.,
Moya, J. M., and Wheatley, M. (2010). The SignSpeak project-
bridging the gap between signers and speakers. In LREC.

http://cedricdeboom.github.io/blog/word2vec-models/
http://cedricdeboom.github.io/blog/word2vec-models/
http://benanne.github.io/2015/03/17/plankton.html
http://benanne.github.io/2015/03/17/plankton.html

Bibliography 169

Escalante, H. J., Ponce-López, V., Wan, J., Riegler, M. A., Chen,
B., Clapés, A., Escalera, S., Guyon, I., Baró, X., Halvorsen, P.,
et al. (2016). Chalearn joint contest on multimedia challenges
beyond visual analysis: An overview. In Pattern Recognition
(ICPR), 2016 23rd International Conference on, pages 67–73.
IEEE.

Escalera, S., Baró, X., GonzÃ lez, J., Bautista, M. A., Madadi,
M., Reyes, M., Ponce, V., Escalante, H. J., Shotton, J., and
Guyon, I. (2014). Chalearn Looking at People Challenge 2014:
Dataset and Results. In European Conference on Computer
Vision workshop.

Escalera, S., Gonzàlez, J., Baró, X., Reyes, M., Lopes, O., Guyon,
I., Athitsos, V., and Escalante, H. (2013). Multi-modal gesture
recognition challenge 2013: Dataset and results. ICMI.

Evangelidis, G. D., Singh, G., and Horaud, R. (2014). Continuous
gesture recognition from articulated poses. In Computer Vision-
ECCV 2014 Workshops, pages 595–607. Springer.

Farnebäck, G. (2003). Two-Frame Motion Estimation Based on
Polynomial Expansion, pages 363–370. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Fothergill, S., Mentis, H. M., Kohli, P., and Nowozin, S. (2012).
Instructing people for training gestural interactive systems. In
ACM Computer Human Interaction.

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003).
Learning precise timing with lstm recurrent networks. The
Journal of Machine Learning Research, 3:115–143.

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet,
V. (2013). Multi-digit number recognition from street view im-
agery using deep convolutional neural networks. arXiv preprint
arXiv:1312.6082.

170 Bibliography

Graham, B. (2014). Spatially-sparse convolutional neural networks.
arXiv preprint arXiv:1409.6070.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech
recognition with recurrent neural networks. In International
Conference on Machine Learning, pages 1764–1772.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H.,
and Schmidhuber, J. (2009). A novel connectionist system for
unconstrained handwriting recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 31(5):855–868.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech
recognition with deep recurrent neural networks. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 6645–6649. IEEE.

Güler, R. A., Neverova, N., and Kokkinos, I. (2018). Densepose:
Dense human pose estimation in the wild. arXiv preprint
arXiv:1802.00434.

Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learn-
ing rich features from rgb-d images for object detection and
segmentation. In ECCV. Springer.

Guyon, I., Athitsos, V., Jangyodsuk, P., Hamner, B., and Es-
calante, H. J. (2012). Chalearn gesture challenge: Design and
first results. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops.

Hanke, T. (2004). Hamnosys-representing sign language data in
language resources and language processing contexts. In LREC,
volume 4, pages 1–6.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,
Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates,
A., et al. (2014). Deepspeech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Bibliography 171

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
770–778.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. R. (2012). Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–456.

Jain, A., Tompson, J., LeCun, Y., and Bregler, C. (2014). MoDeep:
A deep learning framework using motion features for human
pose estimation. Computer Vision–ACCV 2014, pages 302–315.

Jarrett, K. and Kavukcuoglu, K. (2009). What is the best multi-
stage architecture for object recognition? Computer Vision,
2009 IEEE 12th International Conference on, pages 2146–2153.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009).
What is the best multi-stage architecture for object recognition?
In Computer Vision, 2009 IEEE 12th International Conference
on, pages 2146–2153. IEEE.

Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3d convolutional neu-
ral networks for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

172 Bibliography

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016).
Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759.

Jun, W., Escalera, S., Gholamreza, A., Escalante, H. J., Baró,
X., Guyon, I., Madadi, M., Juri, A., Jelena, G., Chi, L., and
Yiliang, X. (2017). Results and analysis of chalearn lap multi-
modal isolated and continuous gesture recognition, and real
versus fake expressed emotions challenges. In ICCV Workshops.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,
R., and Fei-Fei, L. (2014). Large-scale video classification with
convolutional neural networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1725–
1732. IEEE.

Kindermans, P.-J., Verschore, H., Verstraeten, D., and Schrauwen,
B. (2012). A P300 BCI for the masses: Prior information
enables instant unsupervised spelling. In Advances in Neural
Information Processing Systems (NIPS), pages 719–727.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic
optimization. ICLR 2015.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun,
R., Torralba, A., and Fidler, S. (2015). Skip-thought vectors.
In Advances in neural information processing systems, pages
3294–3302.

Klaser, A., Marszalek, M., and Schmid, C. (2008). A Spatio-
Temporal Descriptor Based on 3D-Gradients. In British Ma-
chine Vision Conference.

Koller, O., Bowden, R., and Ney, H. (2016a). Automatic alignment
of hamnosys subunits for continuous sign language recognition.
LREC 2016 Proceedings, pages 121–128.

Bibliography 173

Koller, O., Ney, H., and Bowden, R. (2016b). Deep hand: How to
train a cnn on 1 million hand images when your data is contin-
uous and weakly labelled. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3793–3802, Las Vegas,
NV, USA.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012a). Imagenet
classification with deep convolutional neural networks. Advances
in Neural Information, pages 1–9.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012b). Ima-
genet classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre,
T. (2011). HMDB: a large video database for human motion
recognition. In Proceedings of the International Conference on
Computer Vision (ICCV), pages 2556–2563. IEEE.

Laptev, I. (2005). On space-time interest points. International
Journal of Computer Vision, 64(2-3):107–123.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324.

Legrand, J., Auli, M., and Collobert, R. (2016). Neural network-
based word alignment through score aggregation. In Proceedings
of the First Conference on Machine Translation.

Liang, B. and Zheng, L. (2014). Multi-modal gesture recognition
using skeletal joints and motion trail model. In Computer
Vision-ECCV 2014 Workshops, pages 623–638. Springer.

174 Bibliography

Liu, J., Liu, B., Zhang, S., Yang, F., Yang, P., Metaxas, D. N.,
and Neidle, C. (2014a). Non-manual grammatical marker recog-
nition based on multi-scale, spatio-temporal analysis of head
pose and facial expressions. Image and Vision Computing,
32(10):671–681.

Liu, L., Shao, L., Zheng, F., and Li, X. (2014b). Realistic action
recognition via sparsely-constructed gaussian processes. Pattern
Recognition, doi: 10.1016/j.patcog.2014.07.006.

Liu, Z., Chai, X., Liu, Z., and Chen, X. (2017). Continuous
gesture recognition with hand-oriented spatiotemporal feature.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3056–3064.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier
nonlinearities improve neural network acoustic models. In Proc.
ICML, volume 30.

Marazita, M. L., Ploughman, L. M., Rawlings, B., Remington, E.,
Arnos, K. S., and Nance, W. E. (1993). Genetic epidemiological
studies of early-onset deafness in the us school-age population.
American Journal of Medical Genetics Part A, 46(5):486–491.

Marszałek, M., Laptev, I., and Schmid, C. (2009). Actions in
context. In IEEE Conference on Computer Vision & Pattern
Recognition.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,
J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in neural information
processing systems, pages 3111–3119.

Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL:
McGraw Hill, 45.

Bibliography 175

Mohamed, A., Dahl, G. E., and Hinton, G. (2012). Acoustic
modeling using deep belief networks. IEEE Transactions on
Audio, Speech, and Language Processing.

Monnier, C., German, S., and Ost, A. (2014). A multi-scale
boosted detector for efficient and robust gesture recognition. In
European Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 491–502. Springer.

Morris, A., Hagen, A., Glotin, H., and Bourlard, H. (2001). Multi-
stream adaptive evidence combination for noise robust asr.
Speech Communication.

Müller, M. and Röder, T. (2006). Motion templates for auto-
matic classification and retrieval of motion capture data. In
SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-10), pages
807–814.

Nandakumar, K., Wan, K. W., Chan, S. M. A., Ng, W. Z. T.,
Wang, J. G., and Yau, W. Y. (2013). A multi-modal gesture
recognition system using audio, video, and skeletal joint data.
In Proceedings of the 15th ACM on International conference on
multimodal interaction. ACM.

Neverova, N., Wolf, C., Paci, G., Sommavilla, G., Taylor, G. W.,
and Nebout, F. (2013). A multi-scale approach to gesture
detection and recognition. In Computer Vision Workshops
(ICCVW), 2013 IEEE International Conference on. IEEE.

Neverova, N., Wolf, C., Taylor, G., and Nebout, F. (2014). Multi-
scale deep learning for gesture detection and localization. In
European Conference on Computer Vision and Pattern Recog-
nition Workshops.

176 Bibliography

Neverova, N., Wolf, C., Taylor, G., and Nebout, F. (2016). Mod-
Drop: adaptive multi-modal gesture recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 38(8):1692–
1706.

Ng, J. Y.-H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O.,
Monga, R., and Toderici, G. (2015). Beyond short snippets:
Deep networks for video classification. In Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, pages
4694–4702. IEEE.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y.
(2011). Multimodal deep learning. In Proceedings of the 28th
international conference on machine learning (ICML-11), pages
689–696.

Nowozin, S. and Shotton, J. (2012). Action points: A representa-
tion for low-latency online human action recognition. Microsoft
Research Cambridge, Tech. Rep. MSR-TR-2012-68.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R.
(2013). Sequence of the most informative joints (smij): A new
representation for human skeletal action recognition. Journal
of Visual Communication and Image Representation.

Ong, E.-J. and Bowden, R. (2004). A boosted classifier tree for
hand shape detection. In Automatic Face and Gesture Recogni-
tion, 2004. Proceedings. Sixth IEEE International Conference
on, pages 889–894. IEEE.

Ong, E.-J., Koller, O., Pugeault, N., and Bowden, R. (2014). Sign
spotting using hierarchical sequential patterns with temporal
intervals. In IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA.

Oz, C. and Leu, M. C. (2011). American sign language word
recognition with a sensory glove using artificial neural networks.

Bibliography 177

Engineering Applications of Artificial Intelligence, 24(7):1204–
1213.

Peng, X., Wang, L., and Cai, Z. (2014). Action and gesture
temporal spotting with super vector representation. In Euro-
pean Conference on Computer Vision and Pattern Recognition
Workshops.

Pfister, T., Charles, J., and Zisserman, A. (2014). Domain-
adaptive discriminative one-shot learning of gestures. In Com-
puter Vision–ECCV 2014, pages 814–829. Springer.

Pigou, L., Dieleman, S., Kindermans, P.-J., and Schrauwen, B.
(2014). Sign Language Recognition using Convolutional Neural
Networks. In European Conference on Computer Vision and
Pattern Recognition Workshops.

Pigou, L., Van Herreweghe, M., and Dambre, J. (2017). Gesture
and sign language recognition with temporal residual networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3086–3093.

Renals, S., Morgan, N., Bourlard, H., Cohen, M., and Franco, H.
(1994). Connectionist probability estimators in hmm speech
recognition. IEEE Transactions on Speech and Audio Processing,
2(1):161–174.

Salakhutdinov, R. (2009). Learning deep generative models. PhD
thesis, University of Toronto.

Samuel, A. L. (1959). Some studies in machine learning using the
game of checkers. IBM Journal.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact
solutions to the nonlinear dynamics of learning in deep linear
neural networks. arXiv preprint arXiv:1312.6120.

178 Bibliography

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and
LeCun, Y. (2013). Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229.

Shao, L., Zhen, X., Tao, D., and Li, X. (2014). Spatio-temporal
laplacian pyramid coding for action recognition. IEEE Trans-
actions on Cybernetics, vol. 44, no. 6, pp. 817-827.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., and Blake, A. (2011). Real-time human
pose recognition in parts from single depth images. In IEEE
Conference on Computer Vision and Pattern Recognition.

Simon, T., Joo, H., Matthews, I., and Sheikh, Y. (2017). Hand key-
point detection in single images using multiview bootstrapping.
In CVPR.

Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional
networks for action recognition in videos. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., andWeinberger, K. Q.,
editors, Advances in Neural Information Processing Systems
27, pages 568–576. Curran Associates, Inc.

Socher, R., Huval, B., Bath, B., Manning, C. D., and Ng, A. Y.
(2012). Convolutional-recursive deep learning for 3d object
classification. In Advances in Neural Information Processing
Systems.

Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A
dataset of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On
the importance of initialization and momentum in deep learning.
In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1139–1147.

Bibliography 179

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., andWeinberger, K. Q.,
editors, Advances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Taylor, G. W., Fergus, R., LeCun, Y., and Bregler, C. (2010).
Convolutional learning of spatio-temporal features. In European
Conference on Computer Vision. Springer.

Toshev, A. and Szegedy, C. (2014). DeepPose: Human pose
estimation via deep neural networks. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pages
1653–1660. IEEE.

Van Herreweghe, M. (1996). Prelinguaal dove jongeren en Neder-
lands: een syntactisch onderzoek. Universiteit Gent. Faculteit
Letteren en Wijsbegeerte.

Van Herreweghe, M. and Vermeerbergen, M. (2009). Flemish sign
language standardisation. Current Issues in Language Planning,
10.

Van Herreweghe, M., Vermeerbergen, M., Demey, E., De Durpel,
H., H., N., and Verstraete, S. (2015). Het Corpus VGT. Een
digitaal open access corpus van videos and annotaties van
Vlaamse Gebarentaal, ontwikkeld aan de Universiteit Gent ism
KU Leuven. www.corpusvgt.be.

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell,
T., and Saenko, K. (2015). Sequence to sequence–video to text.
arXiv preprint arXiv:1505.00487.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show
and tell: A neural image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 3156–3164.

180 Bibliography

Wan, J., Zhao, Y., Zhou, S., Guyon, I., Escalera, S., and Li,
S. Z. (2016). Chalearn looking at people rgb-d isolated and
continuous datasets for gesture recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 56–64.

Wang, H., Kläser, A., Schmid, C., and Liu, C.-L. (2013). Dense
trajectories and motion boundary descriptors for action recog-
nition. International Journal of Computer Vision.

Wang, H., Wang, P., Song, Z., and Li, W. (2017). Large-scale
multimodal gesture segmentation and recognition based on
convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
3138–3146.

Wang, J., Liu, Z., Wu, Y., and Yuan, J. (2012). Mining actionlet
ensemble for action recognition with depth cameras. In IEEE
Conference on Computer Vision and Pattern Recognition.

Wang, P., Li, W., Liu, S., Zhang, Y., Gao, Z., and Ogunbona,
P. (2016). Large-scale continuous gesture recognition using
convolutional neural networks. In Pattern Recognition (ICPR),
2016 23rd International Conference on, pages 13–18. IEEE.

Wang, R. Y. and Popović, J. (2009). Real-time hand-tracking with
a color glove. ACM transactions on graphics (TOG), 28(3):63.

Wang, S. B., Quattoni, A., Morency, L.-P., Demirdjian, D., and
Darrell, T. (2006). Hidden conditional random fields for gesture
recognition. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 2, pages 1521–
1527. IEEE.

Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. (2016).
Convolutional pose machines. In CVPR.

Bibliography 181

WHO, W. H. O. (2012). WHO global estimates on prevalence of
hearing loss. http://www.who.int/pbd/deafness/estimates.
Visited: 22 November 2017.

Willems, G., Tuytelaars, T., and Gool, L. V. (2008). An efficient
dense and scale-invariant spatio-temporal interest point detec-
tor. In European Conference on Computer Vision. Springer.

Wu, D., Pigou, L., Kindermans, P.-J., Le, N., Shao, L., Dambre,
J., and Odobez, J.-M. (2016). Deep dynamic neural networks
for multimodal gesture segmentation and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence:
Multimodal Human Pose Recovery and Behavior Analysis SI.

Wu, D. and Shao, L. (2013). Silhouette analysis-based action
recognition via exploiting human poses. IEEE Transactions on
Circuits and Systems for Video Technology, vol. 23, no. 2, pp.
236-243.

Wu, D. and Shao, L. (2014a). Deep dynamic neural networks for
gesture segmentation and recognition. European Conference on
Computer Vision and Pattern Recognition Workshops.

Wu, D. and Shao, L. (2014b). Leveraging hierarchical parametric
network for skeletal joints action segmentation and recogni-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition.

Wu, D. and Shao, L. (2014c). Leveraging hierarchical parametric
networks for skeletal joints based action segmentation and
recognition. In IEEE Conference on Computer Vision and
Pattern Recognition.

Wu, J., Cheng, J., Zhao, C., and Lu, H. (2013). Fusing multi-
modal features for gesture recognition. In ACM International
Conference on Multimodal Interaction.

http://www.who.int/pbd/deafness/estimates

182 Bibliography

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical
evaluation of rectified activations in convolutional network. In
ICML Deep Learning Workshop.

Yao, A., Gall, J., Fanelli, G., and Van Gool, L. J. (2011). Does
human action recognition benefit from pose estimation?. In
BMVC.

Yu, D. and Deng, L. (2012). Automatic Speech Recognition.
Springer.

Zaki, M. M. and Shaheen, S. I. (2011). Sign language recognition
using a combination of new vision based features. Pattern
Recognition Letters, 32(4):572–577.

Zeiler, M. and Fergus, R. (2013). Stochastic pooling for regular-
ization of deep convolutional neural networks. arXiv preprint
arXiv:1301.3557, pages 1–9.

	1 Introduction
	1.1 Gesture recognition
	1.2 Sign language recognition
	1.3 Research contributions
	1.4 List of publications

	2 Deep learning
	2.1 Machine learning
	2.1.1 Introduction
	2.1.2 Overfitting and generalization

	2.2 Neural networks
	2.2.1 Gradient descent
	2.2.2 Deep learning

	2.3 Convolutional neural networks
	2.3.1 Filter bank
	2.3.2 Max pooling
	2.3.3 Complete network

	2.4 Recurrent neural networks
	2.4.1 Standard cell
	2.4.2 Long short-term memory cell

	2.5 Optimization and regularization techniques
	2.5.1 Normalization
	2.5.2 Improved gradient descent update rules
	2.5.3 Dropout
	2.5.4 Data augmentation

	3 Gesture recognition using HMMs and 3D CNNs
	3.1 Introduction
	3.1.1 Modeling variable length sequences with HMMs
	3.1.2 Learning emission probabilities with two modalities

	3.2 Related work
	3.3 ChaLearn LAP Montalbano gesture recognition dataset
	3.4 Model formulation & overall approach
	3.4.1 Bayesian networks
	3.4.2 Hidden Markov models
	3.4.3 Deep dynamic neural networks
	3.4.4 State-transition model and inference
	3.4.5 Learning the emission probability

	3.5 Model implementation
	3.5.1 Ergodic states HMM
	3.5.2 Skeleton module
	3.5.3 RGB & depth 3D module
	3.5.4 Multimodal fusion

	3.6 Experiments and analysis
	3.6.1 Experimental protocol
	3.6.2 Results
	3.6.3 Computational complexity

	3.7 Conclusion and future work

	4 Gesture recognition with temporal convolutions and recurrence
	4.1 Introduction
	4.2 Related work
	4.3 Network architectures
	4.3.1 Baseline models
	4.3.2 Bidirectional recurrent models
	4.3.3 Adding temporal convolutions

	4.4 Experiments and analysis
	4.4.1 Data preprocessing
	4.4.2 End-to-end training
	4.4.3 Results
	4.4.4 Failure cases

	4.5 Conclusion and future work

	5 Sign language recognition in video corpora
	5.1 Sing language video corpora
	5.1.1 Corpus NGT
	5.1.2 Corpus VGT
	5.1.3 ChaLearn LAP ConGD

	5.2 Isolated sign recognition
	5.2.1 Data preparation
	5.2.2 Network architecture and training setup
	5.2.3 Results

	5.3 Continuous sign language recognition
	5.3.1 Residual building-block
	5.3.2 Network Architecture
	5.3.3 Experimental setup
	5.3.4 Results

	5.4 Conclusion and future work

	6 Sing language recognition in TV news broadcasts
	6.1 VRT news dataset
	6.2 Methodology
	6.2.1 A shared vector space
	6.2.2 Ranking-based objective

	6.3 Experiments
	6.3.1 Data processing
	6.3.2 Model architecture and training details
	6.3.3 Results

	6.4 Conclusion

	7 Conclusions and future perspectives
	7.1 Summary
	7.2 Future directions
	7.2.1 Future research perspectives
	7.2.2 Potential applications

	A Deep belief networks
	B List of omitted words in subtitles
	Bibliography

